Citation: | Chen Jie, Wang Yanqiang, Le Ping, Dong Qinuan, Cao Yajun, Wang Wei. Analytical study on the crack limitation theory of permeable lining of diversion tunnels under high internal pressure[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(4): 567-575. doi: 10.20265/j.cnki.issn.1007-2993.2024-0317 |
[1] |
侯 靖, 胡敏云. 水工高压隧洞结构设计中若干问题的讨论[J]. 水利学报,2001,32(7):36-40. (HOU J, HU M Y. Discussion on some problems in design of high pressure tunnel for hydro projects[J]. Journal of Hydraulic Engineering,2001,32(7):36-40. (in Chinese) doi: 10.3321/j.issn:0559-9350.2001.07.006
HOU J, HU M Y. Discussion on some problems in design of high pressure tunnel for hydro projects[J]. Journal of Hydraulic Engineering, 2001, 32(7): 36-40. (in Chinese) doi: 10.3321/j.issn:0559-9350.2001.07.006
|
[2] |
叶冀升. 广州抽水蓄能电站建设的科技进步成果[J]. 水力发电学报,1998,(3):87-97. (YE J S. Technological Advancements of GuangzhouPumped Storage Power Station[J]. Journal of Hydroelectric Engineering,1998,(3):87-97. (in Chinese)
YE J S. Technological Advancements of GuangzhouPumped Storage Power Station[J]. Journal of Hydroelectric Engineering, 1998, (3): 87-97.
|
[3] |
SU K, LI Y. Design of pressure tunnel with reinforcement concrete lining under consolidation grouting[J]. Advanced Materials Research,2012,446-449:2731-2735. doi: 10.4028/www.scientific.net/AMR.446-449.2731
|
[4] |
张 巍, 黄立财, 陈世玉. 高压钢筋混凝土隧洞透水衬砌设计理论的进一步研究[J]. 广东水利水电,2008(9):1-4,18. (ZHANG W, HUANG L C, CHEN S Y. A further research of high pressure reinforced concrete tunnel permeable lining design theory[J]. Guangdong Water Resources and Hydropower,2008(9):1-4,18. (in Chinese) doi: 10.3969/j.issn.1008-0112.2008.09.001
ZHANG W, HUANG L C, CHEN S Y. A further research of high pressure reinforced concrete tunnel permeable lining design theory[J]. Guangdong Water Resources and Hydropower, 2008(9): 1-4,18. (in Chinese) doi: 10.3969/j.issn.1008-0112.2008.09.001
|
[5] |
何 敏, 户 莹, 李 宁, 等. 水工压力隧洞衬砌配筋的计算[J]. 西北农林科技大学学报(自然科学版),2018,46(9):131-138. (HE M, HU Y, LI Y, et al. Reinforcement calculation of hydraulic pressure tunnel lining[J]. Journal of Northwest A&F University (Natural Science Edition),2018,46(9):131-138. (in Chinese)
HE M, HU Y, LI Y, et al. Reinforcement calculation of hydraulic pressure tunnel lining[J]. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(9): 131-138. (in Chinese)
|
[6] |
钟建文, 谷兆祺, 彭守拙. 高压隧洞衬砌设计配筋研究[J]. 水力发电学报,2007,26(2):42-46,59. (ZHONG J W, GU Z Q, PENG S Z. Research on the reinforcement in the high pressure tunnel lining[J]. Journal of Hydroelectric Engineering,2007,26(2):42-46,59. (in Chinese) doi: 10.3969/j.issn.1003-1243.2007.02.009
ZHONG J W, GU Z Q, PENG S Z. Research on the reinforcement in the high pressure tunnel lining[J]. Journal of Hydroelectric Engineering, 2007, 26(2): 42-46,59. (in Chinese) doi: 10.3969/j.issn.1003-1243.2007.02.009
|
[7] |
吴俊杰, 潘旭东, 郭 宇, 等. 透水理论在阿尔塔什水电站发电洞混凝土衬砌设计中的应用[J]. 水利水电技术,2018,49(S1):87-91. (WU J J, PAN X D, GUO Y, et al. Application of permeable theory to design of concrete lining for power tunnel of Altash Hydropower Station[J]. Water Resources and Hydropower Engineering,2018,49(S1):87-91. (in Chinese)
WU J J, PAN X D, GUO Y, et al. Application of permeable theory to design of concrete lining for power tunnel of Altash Hydropower Station[J]. Water Resources and Hydropower Engineering, 2018, 49(S1): 87-91. (in Chinese)
|
[8] |
文喜雨, 苏 凯, 周亚峰. 高压水工隧洞透水衬砌设计方法与理论研究[J]. 武汉大学学报(工学版),2016,49(6):824-830. (WEN X Y, SU K, ZHOU Y F. Research of pervious lining design and theory for high pressure hydraulic tunnel[J]. Engineering Journal of Wuhan University,2016,49(6):824-830. (in Chinese)
WEN X Y, SU K, ZHOU Y F. Research of pervious lining design and theory for high pressure hydraulic tunnel[J]. Engineering Journal of Wuhan University, 2016, 49(6): 824-830. (in Chinese)
|
[9] |
周 利, 苏 凯, 周亚峰, 等. 高压水工隧洞透水衬砌渗流–应力–损伤耦合分析方法研究[J]. 水利学报,2018,49(3):313-322. (ZHOU L, SU K, ZHOU Y F, et al. Hydro-mechanical coupling analysis of pervious lining in high pressure hydraulic tunnel[J]. Journal of Hydraulic Engineering,2018,49(3):313-322. (in Chinese)
ZHOU L, SU K, ZHOU Y F, et al. Hydro-mechanical coupling analysis of pervious lining in high pressure hydraulic tunnel[J]. Journal of Hydraulic Engineering, 2018, 49(3): 313-322. (in Chinese)
|
[10] |
张建伟, 刘 贺, 曹克磊, 等. TBM有压输水隧洞内张钢圈–管片–围岩组合结构联合承载力学特性分析[J]. 岩土力学,2024,45(4):1154-1169,1180. (ZHANG J W, LIU H, CAO K L, et al. Combined bearing mechanical characteristics of composite structure of inner tensioned steel ring-segment-surrounding rock in a TBM pressurized water conveyance tunnel[J]. Rock and Soil Mechanics,2024,45(4):1154-1169,1180. (in Chinese)
ZHANG J W, LIU H, CAO K L, et al. Combined bearing mechanical characteristics of composite structure of inner tensioned steel ring-segment-surrounding rock in a TBM pressurized water conveyance tunnel[J]. Rock and Soil Mechanics, 2024, 45(4): 1154-1169,1180. (in Chinese)
|
[11] |
DUAN S Q, JIANG X Q, JIANG Q, et al. Theoretical solution and failure analysis of water pressure on lining of deep-buried non-circular hydraulic tunnel based on the equivalent hydraulic radius method[J]. Engineering Failure Analysis,2023,148:107163. doi: 10.1016/j.engfailanal.2023.107163
|
[12] |
MIN B, ZHANG C P, WANG Y, et al. Experimental and numerical study on the failure performance of cracked tunnel linings[J]. Structures,2024,63:106357. doi: 10.1016/j.istruc.2024.106357
|
[13] |
CHEN J X, HU T T, HU X, et al. Study on the influence of crack depth on the safety of tunnel lining structure[J]. Tunnelling and Underground Space Technology,2024,143:105470. doi: 10.1016/j.tust.2023.105470
|
[14] |
中华人民共和国水利部. 水工混凝土结构设计规范: SL 191—2008[S]. 北京: 中国水利水电出版社, 2009. (Ministry of Water Resources of the People’s Republic of China. Design code for hydraulic concrete structures: SL 191—2008[S]. Beijing: China Water & Power Press, 2009. (in Chinese)
Ministry of Water Resources of the People’s Republic of China. Design code for hydraulic concrete structures: SL 191—2008[S]. Beijing: China Water & Power Press, 2009. (in Chinese)
|
[15] |
中华人民共和国水利部. 水工隧洞设计规范: SL 279—2016[S]. 北京: 中国水利水电出版社, 2016. (Ministry of Water Resources of the People’s Republic of China. Specification for design of hydraulic tunnel: SL 279—2016[S]. Beijing: China Water & Power Press, 2016. (in Chinese)
Ministry of Water Resources of the People’s Republic of China. Specification for design of hydraulic tunnel: SL 279—2016[S]. Beijing: China Water & Power Press, 2016. (in Chinese)
|
[16] |
杜小凯, 任青文, 夏 宁. 高压引水隧洞若干问题的研究现状和存在的问题[J]. 水力发电,2007,33(6):65-68. (DU X K, REN Q W, XIA N. Status quo of the study on the several problems of high pressure diversion tunnel and its existing problems[J]. Water Power,2007,33(6):65-68. (in Chinese) doi: 10.3969/j.issn.0559-9342.2007.06.021
DU X K, REN Q W, XIA N. Status quo of the study on the several problems of high pressure diversion tunnel and its existing problems[J]. Water Power, 2007, 33(6): 65-68. (in Chinese) doi: 10.3969/j.issn.0559-9342.2007.06.021
|
[17] |
GERGELY P, LUTZ L A. Maximum crack width in reinforced concrete flexural members[R]. 1968: 87-117.
|
[18] |
陈 飞, 赵 勇, 周建民. 美国规范ACI 318的裂缝控制方法评析[J]. 建筑科学,2009,25(7):102-105,93. (CHEN F, ZHAO Y, ZHOU J M. Review of crack control methods in ACI 318 code[J]. Building Science,2009,25(7):102-105,93. (in Chinese) doi: 10.3969/j.issn.1002-8528.2009.07.024
CHEN F, ZHAO Y, ZHOU J M. Review of crack control methods in ACI 318 code[J]. Building Science, 2009, 25(7): 102-105,93. (in Chinese) doi: 10.3969/j.issn.1002-8528.2009.07.024
|
[19] |
FROSCH R J. Another look at cracking and crack control in reinforced concrete[J]. ACI Structural Journal,1999,96(3):437-442.
|
[20] |
DARWIN D, SCANLON A, GERGELY P, et al. Cracking of concrete members in direct tension[J]. Journal of the American Concrete Institute, 1986, 83(1): 3-13.
|
[21] |
SCHLEISS A J. Design of reinforced concrete linings of pressure tunnels and shafts[J]. International Journal on Hydropower & Dams, 1997, 4(3): 88-94.
|
[22] |
潘家铮. 水工隧洞和调压室[M]. 北京: 水利电力出版社, 1990. (PAN J Z. Design of hydraulic tunnels and surge chambers[M]. Beijing: Water Resources and Electric Power Press, 1990. (in Chinese)
PAN J Z. Design of hydraulic tunnels and surge chambers[M]. Beijing: Water Resources and Electric Power Press, 1990. (in Chinese)
|
[23] |
刘秀珍. 关于圆形有压水工隧洞衬砌裂缝计算的探讨[J]. 水力发电,1983(12):37-44. (LIU X Z. An approach to crack calculation of lining of circular presssure tunnel[J]. Water Power,1983(12):37-44. (in Chinese)
LIU X Z. An approach to crack calculation of lining of circular presssure tunnel[J]. Water Power, 1983(12): 37-44.
|
[24] |
沈 威, 徐世烺. 水工压力隧洞结构限裂设计研究现状[J]. 水电能源科学,2010,28(3):84-87. (SHEN W, XU S L. Review on crack limiting design of high pressure tunnel in hydraulic project[J]. Water Resources and Power,2010,28(3):84-87. (in Chinese) doi: 10.3969/j.issn.1000-7709.2010.03.027
SHEN W, XU S L. Review on crack limiting design of high pressure tunnel in hydraulic project[J]. Water Resources and Power, 2010, 28(3): 84-87. (in Chinese) doi: 10.3969/j.issn.1000-7709.2010.03.027
|
[25] |
丁旭柳, 伍鹤皋, 朱忠华. 钢筋混凝土压力隧洞裂缝宽度计算方法的探讨[J]. 武汉大学学报(工学版),2001,34(2):24-27. (DING X L, WU H G, ZHU Z H. Study on computational method of crack width of reinforced concrete pressure tunnels[J]. Engineering Journal of Wuhan University,2001,34(2):24-27. (in Chinese)
DING X L, WU H G, ZHU Z H. Study on computational method of crack width of reinforced concrete pressure tunnels[J]. Engineering Journal of Wuhan University, 2001, 34(2): 24-27. (in Chinese)
|
[26] |
佘 磊, 王玉杰, 曹瑞琅, 等. 高压水工隧洞钢筋混凝土衬砌裂缝开度计算方法评析[J]. 水利水电技术,2018,49(8):142-149. (SHE L, WANG Y J, CAO R L, et al. Analysis on crack-opening calculation method for reinforced concrete lining of high pressure hydraulic tunnel[J]. Water Resources and Hydropower Engineering,2018,49(8):142-149. (in Chinese)
SHE L, WANG Y J, CAO R L, et al. Analysis on crack-opening calculation method for reinforced concrete lining of high pressure hydraulic tunnel[J]. Water Resources and Hydropower Engineering, 2018, 49(8): 142-149. (in Chinese)
|
[27] |
陈 晨, 曹瑞琅, 姚磊华, 等. 考虑主筋约束作用的高压水工隧洞衬砌裂缝开度研究[J]. 水利水电技术,2018,49(11):75-81. (CHEN C, CAO R L, YAO L H, et al. Main reinforcement constraint effect-considered study on crack opening of lining for high-pressure hydraulic tunnel[J]. Water Resources and Hydropower Engineering,2018,49(11):75-81. (in Chinese)
CHEN C, CAO R L, YAO L H, et al. Main reinforcement constraint effect-considered study on crack opening of lining for high-pressure hydraulic tunnel[J]. Water Resources and Hydropower Engineering, 2018, 49(11): 75-81. (in Chinese)
|
[28] |
王玉杰, 陈 晨, 曹瑞琅, 等. 高内水压力隧洞钢筋混凝土衬砌裂缝控制标准[J]. 水力发电学报,2020,39(9):111-120. (WANG Y J, CHEN C, CAO R L, et al. Study on crack control standards for reinforced concrete linings in high internal water pressure tunnels[J]. Journal of Hydroelectric Engineering,2020,39(9):111-120. (in Chinese) doi: 10.11660/slfdxb.20200911
WANG Y J, CHEN C, CAO R L, et al. Study on crack control standards for reinforced concrete linings in high internal water pressure tunnels[J]. Journal of Hydroelectric Engineering, 2020, 39(9): 111-120. (in Chinese) doi: 10.11660/slfdxb.20200911
|
[29] |
文喜雨. 透水衬砌设计方法与高压隧洞承载特性研究[D]. 武汉: 武汉大学, 2017. (WEN X Y. Design of permeable and load-bearing characteristics of high pressure tunnel[D]. Wuhan: Wuhan University, 2017. (in Chinese)
WEN X Y. Design of permeable and load-bearing characteristics of high pressure tunnel[D]. Wuhan: Wuhan University, 2017. (in Chinese)
|
[30] |
李志龙. 水工高压隧洞衬砌计算方法研究[D]. 大连: 大连理工大学, 2015. (LI Z L. Study on structural analysis methods of hydraulic pressure tunnel linings[D]. Dalian: Dalian University of Technology, 2015. (in Chinese)
LI Z L. Study on structural analysis methods of hydraulic pressure tunnel linings[D]. Dalian: Dalian University of Technology, 2015. (in Chinese)
|
[31] |
苏 凯, 伍鹤皋, 周创兵. 内水压力下水工隧洞衬砌与围岩承载特性研究[J]. 岩土力学,2010,31(8):2407-2412,2452. (SU K, WU H G, ZHOU C B. Study of combined bearing characteristics of lining and surrounding rock for hydraulic tunnel under internal water pressure[J]. Rock and Soil Mechanics,2010,31(8):2407-2412,2452. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.08.010
SU K, WU H G, ZHOU C B. Study of combined bearing characteristics of lining and surrounding rock for hydraulic tunnel under internal water pressure[J]. Rock and Soil Mechanics, 2010, 31(8): 2407-2412,2452. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.08.010
|
[32] |
卢兆康. 高压引水隧洞的有限元计算[J]. 人民珠江,1992(1):15-19. (LU Z K. The calcultion of high pressure tunnel by means of finite element method[J]. Pearl River,1992(1):15-19. (in Chinese)
LU Z K. The calcultion of high pressure tunnel by means of finite element method[J]. Pearl River, 1992(1): 15-19.
|
[33] |
张 栋, 邰纯洁, 肖 明. 惠州抽水蓄能电站地下高压钢筋混凝土岔管三维有限元分析[J]. 湖北水力发电,2006(1):24-28. (ZHANG D, TAI C J, XIAO M. 3-D finite element analysis of underground high pressure R C Bifurcation of huizhou pumped storage power station[J]. Hubei water power,2006(1):24-28. (in Chinese)
ZHANG D, TAI C J, XIAO M. 3-D finite element analysis of underground high pressure R C Bifurcation of huizhou pumped storage power station[J]. Hubei water power, 2006(1): 24-28.
|
[34] |
王 明. 广东阳江抽水蓄能电站高压隧洞钢筋混凝土衬砌结构设计[J]. 广东水利水电,2022(12):79-83. (WANG M. Structural design of reinforced concrete lining for high pressure tunnel of Yangjiang pumped storage station[J]. Guangdong Water Resources and Hydropower,2022(12):79-83. (in Chinese)
WANG M. Structural design of reinforced concrete lining for high pressure tunnel of Yangjiang pumped storage station[J]. Guangdong Water Resources and Hydropower, 2022(12): 79-83. (in Chinese)
|