Volume 36 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Wen Weiguang, Lu Qing, Liu Xiaolei, Wang Hui, Song Wenjing. Distribution and Characteristics of the Phreatic Water in Tianjin Binhai Core Area[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2022, 36(1): 37-42. doi: 10.3969/j.issn.1007-2993.2022.01.007
Citation: Wen Weiguang, Lu Qing, Liu Xiaolei, Wang Hui, Song Wenjing. Distribution and Characteristics of the Phreatic Water in Tianjin Binhai Core Area[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2022, 36(1): 37-42. doi: 10.3969/j.issn.1007-2993.2022.01.007

Distribution and Characteristics of the Phreatic Water in Tianjin Binhai Core Area

doi: 10.3969/j.issn.1007-2993.2022.01.007
  • Received Date: 2020-10-23
  • Publish Date: 2022-02-16
  • Taking Tianjin Binhai core area as an example, the engineering characteristics of phreatic water in coastal area were studied. The lithological composition, spatial distribution and permeability of the phreatic water-rich aquifer and phreatic aquifer in Binhai core area were investigated, and the status and dynamic change of the phreatic water level were analyzed. The range values of water quality analysis indexes such as Cl, SO42− were provided, and their water quality was evaluated. The results show that: (1) The phreatic water level in the Binhai core area is shallow and mainly distributed in silts layers of Q43Nal, Q41al and Q42m and other phreatic water-rich aquifer, with a thickness of less than 6 m. The permeability coefficient of phreatic aquifers is generally 0.1~0.6 m/d, indicating weak permeability. (2) The annual dynamics of the phreatic water level in Binhai core area show a certain law with seasonal changes. The annual variation range is generally 0.22~0.72 m in the past five years, and the maximum water level in the past five years has an overall upward trend, which is about 0.3 m. The main indicators of phreatic water quality in the past five years have the trend of decreasing first and then increasing, and the water quality is poor.

     

  • loading
  • [1]
    汪 勇,刘晓磊,王 辉,等. 天津中心城区地下潜水水位动态变化特征分析及预测[J]. 工程勘察,2018,(S1):656-661.
    [2]
    高志鹏,屈吉鸿,陈南祥,等. 地下水动态时空变化特征及其驱动因素[J]. 水电能源科学,2017,35(6):116-119.
    [3]
    王凯燕,王文卓,李琼芳,等. 天津地区近21年地下水埋深变化特征及其影响因素[J]. 水资源保护,2014,30(3):45-49.
    [4]
    徐 源,李连营,赵晨凯,等. 天津滨海新区地下潜水、土腐蚀性评价分析[J]. 勘察科学技术,2016,(4):41-43. doi: 10.3969/j.issn.1001-3946.2016.04.011
    [5]
    陈 阳. 天津市长序列地下水水位动态研究 [D]. 北京: 中国地质大学(北京), 2015.
    [6]
    王 华,戴国锋,崔孝礼,等. 滨海地区地下水土腐蚀性及防腐蚀设计浅析[J]. 工程勘察,2018,(S1):618-623.
    [7]
    张 毅. 基于GMS的某动物蛋白生产厂区地下水污染数值模拟与预测[J]. 岩土工程技术,2017,31(5):258-262. doi: 10.3969/j.issn.1007-2993.2017.05.009
    [8]
    周 杨. 地下水监测井综合柱状图自动绘图工具软件的开发[J]. 岩土工程技术,2020,34(3):126-129.
    [9]
    张在明. 地下水与建筑基础工程[M]. 北京: 中国建筑工业出版社, 2001.
    [10]
    刘晓磊,赵志峰,周玉明,等. 滨海地基土层的空间插值分析[J]. 工程地质学报,2018,26(3):794-801.
    [11]
    杨忠平,卢文喜,李 平. 时间序列模型在吉林西部地下水动态变化预测中的应用[J]. 水利学报,2005,36(12):1475-1479. doi: 10.3321/j.issn:0559-9350.2005.12.013
    [12]
    周玉明,郭进京,温伟光,等. 天津市滨海新区地基土类型及工程地质分区研究[J]. 地质调查与研究,2016,39(4):293-299. doi: 10.3969/j.issn.1672-4135.2016.04.008
    [13]
    高丽丽,路 清,温伟光,等. 天津新梅江地区潜水水位水质变化规律研究[J]. 工程勘察,2020,(S1):42-48.
    [14]
    邹 晔,胡 莹,朱世芳. 地下水位动态序列分析与预报研究[J]. 西部探矿工程,2015,27(6):182-185. doi: 10.3969/j.issn.1004-5716.2015.06.054
    [15]
    GB 50021—2001 岩土工程勘察规范(2009年版)[S].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (137) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return