Volume 36 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Liu Min, Zhou Kui, Zhang Chao, Yao Chenhui, Huang Lei, Liu Zhenghong. Formation Mechanisms of High Rock-slope Deformation Under Heavy Rainfall[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2022, 36(3): 173-178. doi: 10.3969/j.issn.1007-2993.2022.03.001
Citation: Liu Min, Zhou Kui, Zhang Chao, Yao Chenhui, Huang Lei, Liu Zhenghong. Formation Mechanisms of High Rock-slope Deformation Under Heavy Rainfall[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2022, 36(3): 173-178. doi: 10.3969/j.issn.1007-2993.2022.03.001

Formation Mechanisms of High Rock-slope Deformation Under Heavy Rainfall

doi: 10.3969/j.issn.1007-2993.2022.03.001
  • Received Date: 2021-01-26
    Available Online: 2022-06-02
  • Publish Date: 2022-06-02
  • A series of deformation and failure occurred at different elevations during the excavation process on the right bank slope of a dam site of a hydropower station under construction in Southeast Asia, which were mainly manifested as cracks, partial collapses, and landslides, and the slope was in a critical state of instability. Based on the actual engineering geological conditions, field geological survey and monitoring data after the excavation of the slope, the deformation characteristics of the slope were summarized and the cause mechanism of the deformation and failure was analyzed. The results show that the free surface is formed and the stress field is redistributed after slope excavation, and the rock mass rebound to the free surface, which intensifies the opening and penetration of the rock mass fissures, and provides a good channel for rainwater infiltration. The material in the F11 fault absorbs water and softens, resulting in uneven deformation, which lead to the cracks and partial landslides. The fracture accelerated its development to the deep and the rock (soil) softens rapidly as well as accumulates a large amount of compression creep due to the twice of heavy rains, the creep slip-pull crack type landslide is formed after the slip surface penetrates. This research could provide a certain degree of excavation and support for the later period.

     

  • loading
  • [1]
    张御阳,黄润秋,裴向军,等. 楞古水电站碎裂岩质边坡变形破坏模式研究[J]. 工程地质学报,2017,25(2):556-564.
    [2]
    黄志鹏,唐辉明,董志宏,等. 锦屏水电站料场边坡变形特征与破坏机制分析[J]. 长江科学院院报,2015,32(10):65-69.
    [3]
    陈 菲,王 塞,高云建,等. 白格滑坡裂缝区演变过程及其发展趋势分析[J]. 工程科学与技术,2020,52(5):71-78.
    [4]
    张灵熹,陈 筠,刘恋嘉,等. 云盘头滑坡变形破坏机制研究[J]. 长江科学院院报,2019,36(11):27-33. doi: 10.11988/ckyyb.20171097
    [5]
    樊友庆,卢 游,简文星,等. 赣南边坡变形破坏模式与防治对策[J]. 地质科技情报,2017,36(3):205-211.
    [6]
    曾荣福,肖万春,史国坤. 西藏某水电站近坝库岸滑坡稳定性分析与评价[J]. 水利与建筑工程学报,2020,18(4):178-184. doi: 10.3969/j.issn.1672-1144.2020.04.030
    [7]
    焦国木. 大型岩质高边坡稳定性分析与综合设计[J]. 路基工程,2020,210(3):204-208.
    [8]
    姬永尚,陈 晓,赵宇飞,等. F9断层遇水软化对高边坡稳定性的影响分析[J]. 水利科技与经济,2015,21(12):31-35. doi: 10.3969/j.issn.1006-7175.2015.12.010
    [9]
    冉 涛,周洪福,徐 伟,等. 川西交通廊道雅安—泸定段典型岩质边坡失稳模式、破坏机理及防治措施[J]. 自然灾害学报,2020,29(4):200-210.
    [10]
    黄振伟,马力刚,雷 明. 西藏扎拉水电站倾倒边坡工程地质特性研究[J]. 工程科学与技术,2020,52(5):79-88.
    [11]
    黄振伟,肖东佑. 西藏扎拉水电站倾倒变形边坡稳定性分析与评价[J]. 人民长江,2019,50(12):.90-94.
    [12]
    杨建成,邓 琴. 岩质边坡倾倒破坏的非连续变形分析[J]. 水利与建筑工程学报,2016,14(2):118-122. doi: 10.3969/j.issn.1672-1144.2016.02.023
    [13]
    喻永祥,何 伟,李 勇,等. 雪浪山横山寺西侧顺层岩质高边坡变形破坏机理与治理方案分析[J]. 中国地质灾害与防治学报,2020,31(2):33-43.
    [14]
    宋娅芬,陈从新,郑 允,等. 缓倾软硬岩互层边坡变形破坏机制模型试验研究[J]. 岩土力学,2015,36(2):487-494.
    [15]
    刘震涛,周洪福,徐 伟,等. 降雨与开挖联合作用下边坡位移矢量及速率变化分析−以韩江高陂水利枢纽右岸尾水渠边坡为例[J]. 工程地质学报,2020,28(1):122-131.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (253) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return