Volume 36 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Sun Yili, Guo Xiaoguang, Yu Hongkun, Wei Ning, Zhen Zhen. Quantitative Analysis of the Maximum Water Level Prediction in Beijing Mi-Huai-Shun Water Source Area[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2022, 36(4): 295-300. doi: 10.3969/j.issn.1007-2993.2022.04.007
Citation: Sun Yili, Guo Xiaoguang, Yu Hongkun, Wei Ning, Zhen Zhen. Quantitative Analysis of the Maximum Water Level Prediction in Beijing Mi-Huai-Shun Water Source Area[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2022, 36(4): 295-300. doi: 10.3969/j.issn.1007-2993.2022.04.007

Quantitative Analysis of the Maximum Water Level Prediction in Beijing Mi-Huai-Shun Water Source Area

doi: 10.3969/j.issn.1007-2993.2022.04.007
  • Received Date: 2021-04-20
    Available Online: 2022-08-08
  • Publish Date: 2022-08-08
  • By analyzing the variation and influencing factors of groundwater level, the dynamic characteristics of groundwater level in a single aquifer structure area in Miyun, Huairou and Shunyi in Beijing are divided into four stages: groundwater balance period (1960s—late 1970s), groundwater overexploitation period (1980s—2003), Huairou emergency water source impact period (2003—2015) and ecological water replenishment impact period (2015 to now). The exploitation of regional groundwater and ecological water replenishment are the main factors causing the change of regional water level. The change of groundwater level has the typical characteristics of artificial influence. In the future, with the water sources such as No. 8 water plant entering the production limit period, Huairou emergency water source entering the hot standby conservation period and the normalization of ecological water replenishment, the groundwater level will continue to rise rapidly because the aquifer structure in this area is mainly gravel and has great permeability. Based on the water level observation data of different time series in the study area, the maximum water level of Miyun, Huairou and Shunyi water source is predicted by quantitative analysis method. The research results can provide guidance and reference for the reasonable determination of anti-floating water level and groundwater control of deep foundation pit engineering in this area.

     

  • loading
  • [1]
    李 阳,胡桂全,郭宏佳. 潮白河流域南水北调水源回灌监测与影响分析[J]. 南水北调与水利科技,2017,(7):29-32.
    [2]
    陈 刚,黄 骁,孙进忠. 北京怡海花园工程建筑抗浮设防水位研究[J]. 工程地质学报,2004,(12):421-424.
    [3]
    王军辉,陶连金,韩 煊,等. 我国结构抗浮水位研究现状与展望[J]. 水利水运工程学报,2017,(3):128-129.
    [4]
    张在明. 地下水与建筑基础工程[M]. 北京: 中国建筑工业出版社, 2001.
    [5]
    张在明,孙保卫,徐宏声. 地下水赋存状态与渗流特征对基础抗浮的影响[J]. 土木工程学报,2001,34(1):73-78. doi: 10.3321/j.issn:1000-131X.2001.01.014
    [6]
    郭高轩,沈媛媛,朱 琳,等. 多重因素影响下的怀柔应急水源地及其周边地区地下水流场演化[J]. 南水北调与水利科技,2014,12(3):160-163.
    [7]
    任 宇,徐志全,李 双,等. 怀柔应急备用水源地供水分析与评价[J]. 北京水务,2016,(6):29-32. doi: 10.3969/j.issn.1673-4637.2016.05.008
    [8]
    李 阳,乔 玲,张景华,等. 怀柔应急备用水源地下水位及水质分析[J]. 北京水务,2018,(4):21-23.
    [9]
    何亚平,李世君,李 阳,等. 南水北调对潮白河地区回补情况及水位影响分析[J]. 北京水务,2019,(3):21-25.
    [10]
    熊晓艳,刘立才,郭敏丽. 南水北调水源补给潮白河水源地对地下水质的影响分析[J]. 北京水务,2018,(3):13-16.
    [11]
    欧志亮. 北京市潮白河地下水库建库条件与方案建议[J]. 城市地质,2017,(2):7-12.
    [12]
    迈德顺, 任 宇, 李世君. 等. 怀柔应急水源地开采动态分析及续采对策研究[J]. 北京水务, 2011, (2): 38-40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (82) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return