Volume 36 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Tao Wei, Ye Tangjin, Zhang Wenhai, Wang Xiaoyu, Liu Congcong. Experimental Study on Uniaxial Compressive Fatigue Property of Cracked Rock-like Materials[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2022, 36(5): 389-394. doi: 10.3969/j.issn.1007-2993.2022.05.009
Citation: Tao Wei, Ye Tangjin, Zhang Wenhai, Wang Xiaoyu, Liu Congcong. Experimental Study on Uniaxial Compressive Fatigue Property of Cracked Rock-like Materials[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2022, 36(5): 389-394. doi: 10.3969/j.issn.1007-2993.2022.05.009

Experimental Study on Uniaxial Compressive Fatigue Property of Cracked Rock-like Materials

doi: 10.3969/j.issn.1007-2993.2022.05.009
  • Received Date: 2021-05-31
  • Publish Date: 2022-10-08
  • To study the fatigue failure behavior of rocks with penetration cracks and reveal the fatigue damage and failure mechanism of rocks with defects, the cracked white cement specimens were prepared by pre-embedded strip method. The effects of various crack inclination angles and stress distribution on crack propagation was revealed by uniaxial compression fatigue test. The result showed that the fracture trajectory of the low cycle fatigue test was basically the same as that of the static test. The crack initiated from the crack tip and the crack angle was about 45°~75°, which could be considered as typical tensile Mode I fracture. The relationship between crack propagation length and the number of cycles revealed that the crack growth rate increased rapidly with the number of cycles and then underwent a stable phase and finally increased rapidly, which has been verified that the fatigue failure process went through three stages: initial plastic deformation stage, slow growth stage and rapid infiltration stage. According to the analysis of fatigue strain energy, energy required by the crack in the initiation stage was relatively large, and after the crack started to expand, the strain energy density remained basically unchanged, indicating that the energy required in the process of crack expansion tended to be stable. Comparing the strain energy density curves of different stress levels and stress ratios, the strain energy density gradually increased at larger stress levels and stress ratios, indicating that the sample could absorb more energy under larger stress levels and stress ratios, and the energy of crack initiation and propagation was faster.

     

  • loading
  • [1]
    BURDINE N T. Rock failure under dynamic loading conditions[J]. Society of Petroleum Engineers Journal,1963,3(1):1-8.
    [2]
    ATTEWELL P B , FARMER I W. Fatigue behavior of rock[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1973,10(1):1-9.
    [3]
    SINGH S K. Fatigue and strain hardening behavior of Graywacke from the Flagstaff formation, New South Wales[J]. Engineering Geology,1989,26:171-179. doi: 10.1016/0013-7952(89)90005-7
    [4]
    BAGDE M N,PETROS V. Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading[J]. International Journal of Rock Mechanics & Mining Sciences,2005,42(2):237-250.
    [5]
    张世殊,刘恩龙,张建海. 砂岩在低频循环荷载作用下的疲劳和损伤特性试验研究[J]. 岩石力学与工程学报,2014,33(S1):3212-3218.
    [6]
    张 波,李术才,杨学英,等. 含交叉多裂隙类岩石材料单轴压缩力学性能研究[J]. 岩石力学与工程学报,2015,34(9):1777-1785.
    [7]
    GAO G,HUANG S,XIA K,et al. Application of digital image correlation(dic) in dynamic notched semi-circular bend (NSCB) tests[J]. Experimental Mechanics,2015,55(1):95-104. doi: 10.1007/s11340-014-9863-5
    [8]
    GAO G,YAO W,XIA K,et al. Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method[J]. Engineering Fracture Mechanics,2015,138(1):146-155.
    [9]
    GAO G Y,ZHOU J,LI Z. Experimental investigation of dynamic fracture behaviors of polymethyl methacrylate[J]. Macromolecular Symposia,2016,365(1):180-190. doi: 10.1002/masy.201650029
    [10]
    王奇智,吴帮标,刘 丰,等. 预制裂隙类岩石材料板动态压缩破坏试验研究[J]. 岩石力学与工程学报,2018,37(11):2489-2497.
    [11]
    谢 璨,李树忱,晏 勤,等. 不同尺寸裂隙岩石损伤破坏特性光弹性试验研究[J]. 岩土工程学报,2018,40(3):568-575. doi: 10.11779/CJGE201803023
    [12]
    肖桃李,何祥锋,汪宗华,等. 单轴压缩下单裂隙类岩石强度变形特性分析[J]. 长江大学学报(自科版),2018,15(1):64-67.
    [13]
    李 铮,郭德平,周小平,等. 模拟岩石中裂纹扩展连接的近场动力学方法[J]. 岩土力学,2019,40(12):4711-4721.
    [14]
    马鹏飞,李树忱,周慧颖,等. 岩石材料裂纹扩展的改进近场动力学方法模拟[J]. 岩土力学,2019,40(10):4111-4119.
    [15]
    陈云娟,刘洪钊,尹福强,等. 交叉节理类岩石裂隙扩展规律研究[J]. 山东建筑大学学报,2019,34(2):22-26.
    [16]
    王程程,罗鑫尧,陈科旭,等. 含预制裂隙类岩石裂隙演化与破裂特征的试验研究[J]. 黄金科学技术,2020,28(3):421-429. doi: 10.11872/j.issn.1005-2518.2020.03.164
    [17]
    秦 楠,张作良,冯学志,等. 蠕变作用后裂隙类岩石单轴强度和裂纹扩展规律研究[J]. 煤炭科学技术,2020,48(12):244-249.
    [18]
    吴 钰,任旭华,张继勋,等. 含裂隙岩石单轴压缩数值试验研究[J]. 三峡大学学报(自然科学版),2021,43(2):35-41.
    [19]
    葛修润,蒋 宇,卢允德,等. 周期荷载作用下岩石疲劳变形特性试验研究[J]. 岩石力学与工程学报,2003,22(10):1581-1585. doi: 10.3321/j.issn:1000-6915.2003.10.001
    [20]
    章清叙,葛修润,黄 铭,等. 周期荷载作用下红砂岩三轴疲劳变形特性试验研究[J]. 岩石力学与工程学报,2006,25(3):473-478. doi: 10.3321/j.issn:1000-6915.2006.03.006
    [21]
    葛修润,卢应发. 循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J]. 岩土工程学报,1992,14(3):56-60. doi: 10.3321/j.issn:1000-4548.1992.03.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (71) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return