Volume 36 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Zhang Shilei, Tian Zhenhua. Research on Deformation of Surrounding Rock by Linear Monitoring Technology in Large Underground Cavity with High Geostress[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2022, 36(6): 437-442. doi: 10.3969/j.issn.1007-2993.2022.06.002
Citation: Zhang Shilei, Tian Zhenhua. Research on Deformation of Surrounding Rock by Linear Monitoring Technology in Large Underground Cavity with High Geostress[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2022, 36(6): 437-442. doi: 10.3969/j.issn.1007-2993.2022.06.002

Research on Deformation of Surrounding Rock by Linear Monitoring Technology in Large Underground Cavity with High Geostress

doi: 10.3969/j.issn.1007-2993.2022.06.002
  • Received Date: 2021-08-04
  • Publish Date: 2022-12-08
  • Based on the monitoring data of INCREX Mobile Extensometer implemented on the dome and engineering geological investigation in large underground cavity, the deformation characteristics of surrounding rock of dome in the cylindrical cavern and the middle wall of the long corridor-shaped underground cavern are discussed, as well as the development of relaxation circle. The spatial differentiation and evolution law of deformation in the cylindrical cavern dome are analyzed. The range and evolution characteristics of relaxation zone of mid-partition in large underground caverns are clarified. The results show that: (1) The structural plane has little influence on the deformation magnitude of the surrounding rock of the cylindrical cavern dome (within 5 mm), and the deformation law of the joint rock in the dome is similar to that of the grade III surrounding rock. The deformation of the surrounding rock mainly occurs in the construction period near the excavation face, and the influence range is limited to the normal dome. (2) The air in the measuring micrometer borehole is connected with the air in the cavern, and the measured value has a periodic variation. (3) The range of relaxation zone is proportional to the degree of stress concentration, and the maximal depth of relaxation zone is about 1/3 of the excavation height. The development of relaxation zone is mainly concentrated in the excavation stage, and there is basically no expansion after the cavity is formed. The research results can provide reference for the optimization and stability evaluation of the supporting structure of deep buried caverns under high geostress.

     

  • loading
  • [1]
    江 权,冯夏庭,李邵军,等. 高应力下大型硬岩地下洞室群稳定性设计优化的裂化–抑制法及其应用[J]. 岩石力学与工程学报,2019,38(6):1081-1101.
    [2]
    彭 琦,王俤剀,邓建辉,等. 地下厂房围岩变形特征分析[J]. 岩石力学与工程学报,2007,(12):2583-2587. doi: 10.3321/j.issn:1000-6915.2007.12.027
    [3]
    魏进兵,邓建辉,王俤剀,等. 锦屏一级水电站地下厂房围岩变形与破坏特征分析[J]. 岩石力学与工程学报,2010,29(6):1198-1205.
    [4]
    黄润秋,黄 达,段绍辉,等. 锦屏Ⅰ级水电站地下厂房施工期围岩变形开裂特征及地质力学机制研究[J]. 岩石力学与工程学报,2011,30(1):23-35.
    [5]
    卢 波,王继敏,丁秀丽,等. 锦屏一级水电站地下厂房围岩开裂变形机制研究[J]. 岩石力学与工程学报,2010,29(12):2429-2441.
    [6]
    江 权,樊义林,冯夏庭,等. 高应力下硬岩卸荷破裂:白鹤滩水电站地下厂房玄武岩开裂观测实例分析[J]. 岩石力学与工程学报,2017,36(5):1076-1087.
    [7]
    喻 军,林志斌,李元海. 基于透明岩体的深部隧道围岩变形分析[J]. 地下空间与工程学报,2017,13(4):943-949.
    [8]
    刘 健,朱赵辉,蔡 浩,等. 超大型地下洞室拱圈围岩变形、破坏特性研究[J]. 岩土工程学报,2018,40(7):1257-1267.
    [9]
    孟国涛,何世海,陈建林,等. 白鹤滩右岸地下厂房顶拱深层变形机理分析[J]. 岩土工程学报,2020,42(3):576-583.
    [10]
    王 鹏,洪望兵,宋 刚. 柱状节理玄武岩松弛圈尺寸效应及地应力影响[J]. 岩土工程学报,2018,40(1):139-146.
    [11]
    GB50487—2008 水利水电工程地质勘察规范[S]. 北京: 中国计划出版社, 2009.
    [12]
    张宜虎,卢轶然,周火明,等. 围岩破坏特征与地应力方向关系研究[J]. 岩石力学与工程学报,2010,29(S2):3526-3535.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views (66) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return