Volume 37 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Li Qiang, Huang Feng, Gan Lisong. Mechanism and Discrimination of the Large Deformation of Schist Highway Tunnel in Proximal Parallel Tectonic Environment[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(2): 186-193. doi: 10.3969/j.issn.1007-2993.2023.02.010
Citation: Li Qiang, Huang Feng, Gan Lisong. Mechanism and Discrimination of the Large Deformation of Schist Highway Tunnel in Proximal Parallel Tectonic Environment[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(2): 186-193. doi: 10.3969/j.issn.1007-2993.2023.02.010

Mechanism and Discrimination of the Large Deformation of Schist Highway Tunnel in Proximal Parallel Tectonic Environment

doi: 10.3969/j.issn.1007-2993.2023.02.010
  • Received Date: 2021-12-22
  • Accepted Date: 2022-08-25
  • Rev Recd Date: 2022-07-01
  • Publish Date: 2023-04-08
  • The large deformation occurred several times since Derong No. 1 tunnel was excavated to its deep buried section, which seriously affected the construction safety and the construction period. In order to take targeted and effective prevention measures to control the large deformation of tunnel surrounding rock, the controlled factors and failure mechanism of the large deformation of surrounding rock are comprehensively analyzed. The results show that the large deformation of tunnel surrounding rock was induced by the coupling mechanism of the plastic flow deformation, plastic shear slip deformation, dipping layered bending deformation and progressive looseness extension deformation, which was promoted by engineering disturbed factors under the mutual coupling effect of weak surrounding rock, crushed rock structure, high crustal stress, groundwater and serious deviatoric pressure. On this basis, according to the current traffic industry norms and combined with the deformation characteristics, it is summarized that the comprehensive index scheme for the large deformation grading of surrounding rock in the construction site of two-lane highway tunnel. It provides a more reasonable and reliable basis for guiding the tunnel construction design.

     

  • loading
  • [1]
    陈宗基. 地下巷道长期稳定性的力学问题[J]. 岩石力学与工程学报,1982,1(1):1-20.
    [2]
    ANAGNOSTOU G. A model for swelling rock in tunnelling[J]. Rock Mechanics & Rock Engineering,1993,26(4):307-331.
    [3]
    AYDAN O,AKAGI T,KAWAMOTO T. The squeezing potential of rocks around tunnels: Theory and prediction[J]. Rock Mechanics & Rock Engineering,1993,26(2):137-163.
    [4]
    何满潮,吕晓俭,景海河. 深部工程围岩特性及非线性动态力学设计理念[J]. 岩石力学与工程学报,2002,21(8):1215-1224. doi: 10.3321/j.issn:1000-6915.2002.08.022
    [5]
    李天斌, 孟陆波, 王兰生. 高地应力隧道稳定性及岩爆、大变形灾害防治[M]. 北京: 科学出版社, 2016.
    [6]
    HOEK E,MARINOS P. Predicting tunnel squeezing problems in weak heterogeneous rock masses[J]. Tunnels and Tunneling International,2000,32(11):45-51.
    [7]
    喻 渝. 挤压性围岩支护大变形的机理及判定方法[J]. 世界隧道,1998,(1):46-51.
    [8]
    张祉道. 关于挤压性围岩隧道大变形的探讨和研究[J]. 现代隧道技术,2003,40(2):5-12. doi: 10.3969/j.issn.1009-6582.2003.02.002
    [9]
    刘志春,朱永全,李文江,等. 挤压性围岩隧道大变形机理及分级标准研究[J]. 岩土工程学报,2008,30(5):690-698. doi: 10.3321/j.issn:1000-4548.2008.05.012
    [10]
    李国良,刘志春,朱永全. 兰渝铁路高地应力软岩隧道挤压大变形规律及分级标准研究[J]. 现代隧道技术,2015,52(1):62-68. doi: 10.13807/j.cnki.mtt.2015.01.009
    [11]
    王胜国. 高地应力软岩隧道大变形分级标准研究[J]. 铁道建筑技术,2016,269(4):40-43. doi: 10.3969/j.issn.1009-4539.2016.04.011
    [12]
    李 宁. 挤压性围岩隧道变形分级与控制对策[J]. 铁道建筑,2018,58(5):55-58.
    [13]
    GB/T 50218—2014 工程岩体分级标准 [S]. 北京: 中国计划出版社, 2014.
    [14]
    TB 10003—2016 铁路隧道设计规范 [S]. 北京: 中国铁道出版社, 2016.
    [15]
    JTG 3370.1—2018 公路隧道设计规范(第一册 土建工程) [S]. 北京: 人民交通出版社, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (98) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return