Volume 37 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Wang Fuchun, Huang Shouguo, Huang Cong. Damage Characteristics of Prefabricated Fractured Granite after High Temperature[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(4): 415-421. doi: 10.3969/j.issn.1007-2993.2023.04.007
Citation: Wang Fuchun, Huang Shouguo, Huang Cong. Damage Characteristics of Prefabricated Fractured Granite after High Temperature[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(4): 415-421. doi: 10.3969/j.issn.1007-2993.2023.04.007

Damage Characteristics of Prefabricated Fractured Granite after High Temperature

doi: 10.3969/j.issn.1007-2993.2023.04.007
  • Received Date: 2022-04-22
  • Publish Date: 2023-08-08
  • Temperature is one of the important factors affecting the physical and mechanical properties of rock. The study of the influence of high temperature on the evolution of rock mechanical properties and damage mechanism is of great significance in the construction of deep rock mass engineering. Based on the PFC particle flow numerical simulation method, the uniaxial compression experiments of pre-existing flaws granite treated at different temperatures (20 ℃,200 ℃,400 ℃,600 ℃,800 ℃) were simulated. The results show that the peak strength and elastic modulus of granite decrease significantly with the increase of heat treatment temperature, while the peak strain increases. The degree of thermal damage caused by different heat treatment temperatures varies, leading to differences in macroscopic failure modes of prefabricated fractured granite. When the heat treatment temperature does not exceed 600 ℃, the granite undergoes failure along both ends of the prefabricated crack; When the heat treatment temperature reaches 800 ℃, thermal damage becomes the dominant factor in the mechanical failure mode of granite, and the degree of fragmentation significantly increases. The research results contribute to understanding the mechanism of rock damage evolution under high temperature, and can provide reference for deep underground engineering.

     

  • loading
  • [1]
    MARDOUKHI A,MARDOUKHI Y,HOKKA M,et al. Effects of heat shock on the dynamic tensile behavior of granitic rocks[J]. Rock Mechanics and Rock Engineering,2017,50(5):1171-1182. doi: 10.1007/s00603-017-1168-4
    [2]
    EDOARDO R,KANT M A,CLAUDIO M,et al. The effects of high heating rate and high temperature on the rock strength: feasibility study of a thermally assisted drilling method[J]. Rock Mechanics and Rock Engineering,2018,51(9):2957-2964. doi: 10.1007/s00603-018-1507-0
    [3]
    YANG S Q,HU B. Creep and longterm permeability of a red sandstone subjected to cyclic loading after thermal treatments[J]. Rock Mechanics and Rock Engineering,2018,51:2981-3004. doi: 10.1007/s00603-018-1528-8
    [4]
    方新宇,许金余,刘 石,等. 高温后花岗岩的劈裂试验及热损伤特性研究[J]. 岩石力学与工程学报,2016,35(S1):2687-2694. doi: 10.13722/j.cnki.jrme.2014.1631
    [5]
    BAISCH S,WEIDLER R,VÖRÖS R,et al. Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin[J]. Bulletin of the Seismological Society of America,2006,96(6):2242-2256. doi: 10.1785/0120050255
    [6]
    郤保平,吴阳春,王 帅,等. 青海共和盆地花岗岩高温热损伤力学特性试验研究[J]. 岩石力学与工程学报,2020,39(1):69-83. doi: 10.13722/j.cnki.jrme.2019.0182
    [7]
    张志镇,高 峰,徐小丽. 花岗岩力学特性的温度效应试验研究[J]. 岩土力学,2011,32(8):2346-2352. doi: 10.3969/j.issn.1000-7598.2011.08.017
    [8]
    郭平业,卜墨华,李清波,等. 岩石有效热导率精准测量及表征模型研究进展[J]. 岩石力学与工程学报,2020,39(10):1983-2013.
    [9]
    JANSEN D P,CARLSON S R,YOUNG R P,et al. Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite[J]. Journal of Geophysical Research:Solid Earth,1993,98(B12):22231-22243. doi: 10.1029/93JB01816
    [10]
    ZHAO Y S,MENG Q R,KANG T H,et al. Micro-CT experimental technology and micro-investigation on thermal fracturing characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27:28-34.
    [11]
    CHEN S,YANG C,WANG G. Evolution of thermal damage and permeability of Beishan granite[J]. Applied Thermal Engineering,2017,110:1533-1542. doi: 10.1016/j.applthermaleng.2016.09.075
    [12]
    SUN Q,ZHANG W,XUE L,et al. Thermal damage pattern and thresholdsof granite[J]. Environmental Earth Sciences,2015,74(3):2341-2349. doi: 10.1007/s12665-015-4234-9
    [13]
    YANG S Q,RANJITH P G,JING H W,et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments[J]. Geothermics,2017,65:180-197. doi: 10.1016/j.geothermics.2016.09.008
    [14]
    CHEN Y L,NI J,SHAO W,et al. Experimental study on the influence of temperature on the mechanical properties of granite under uniaxial compression and fatigue loading[J]. International Journal of Rock Mechanics & Mining Sciences,2012,56(15):62-66.
    [15]
    ZHAO Z H,XU H R,WANG J,et al. Auxetic behavior of Beishan granite after thermal treatment: A microcracking perspective[J]. Engineering Fracture Mechanics,2020,231:101017.
    [16]
    SUN W,WU S C,XU X. Mechanical behavior of Lac du Bonnet granite after high-temperature treatment using bonded-particle model and moment tensor[J]. Computers and Geotechnics,2021,135:104132. doi: 10.1016/j.compgeo.2021.104132
    [17]
    周 喻,吴顺川,许学良,等. 岩石破裂过程中声发射特性的颗粒流分析[J]. 岩石力学与工程学报,2013,32(5):951-959.
    [18]
    宿 辉,朱 谊,刘世伟,等. 基于颗粒流热固耦合模型的片麻花岗岩损伤特性分析[J]. 科学技术与工程,2020,20(5):2009-2013. doi: 10.3969/j.issn.1671-1815.2020.05.045
    [19]
    LI M,LIU X. Effect of thermal treatment on the physical and mechanical properties of sandstone: insights from experiments and simulations[J]. Rock Mechanics and Rock Engineering,2022,55:3171-3194. doi: 10.1007/s00603-022-02791-1
    [20]
    HUANG Y H,YANG S Q,BU Y S. Effect of thermal shock on the strength and fracture behavior of pre-flawed granite specimens under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics,2020,106(2):102-474.
    [21]
    ZHAO Z H,LIU Z N,PU H,et al. Effect of thermal treatment on brazilian tensile strength of granites with different grain size distributions[J]. Rock Mechanics and Rock Engineering,2018,51(4):1293-1303. doi: 10.1007/s00603-018-1404-6
    [22]
    SHI C,YANG W K,YANG J X,et al. Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code[J]. Granular Matter,2019,21(2):38-51. doi: 10.1007/s10035-019-0889-3
    [23]
    ZHAO Z H. Thermal influence on mechanical properties of granite: A microcracking perspective[J]. Rock Mechanics and Rock Engineering,2016,49(11):747-762.
    [24]
    SAKA B L,RANJITH P G,RATHNAWEERA T D,et al. Quantification of thermally-induced microcracks in granite using X-ray CT imaging and analysis[J]. Geothermics,2019,81(11):152-167.
    [25]
    TIAN W L,YANG S Q,WANG J G,et al. Numerical simulation of permeability evolution in granite after thermaltreatment[J]. Computers and Geotechnics,2020,126(14):103-705.
    [26]
    YANG S Q,TIAN W L,ELSWORTH D,et al. An experimental study of effect of high temperature on the permeability evolution and failure response of granite under triaxial compression[J]. Rock Mechanics and Rock Engineering,2020,53(11):4403-4427.
    [27]
    LI Q,YIN T B,LI X B,et al. Effects of rapid cooling treatment on heated sandstone: a comparison between water and liquid nitrogen cooling[J]. Bulletin of Engineering Geology and the Environment,2020,79(2):313-327.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (99) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return