Volume 37 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Gao Xinghe, Zhang Feng, Lv Ben, Li Can. Analysis of Structural Internal Force and Settlement on Nonlinear Elastic Foundation Based on Compression Curve[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(5): 590-594. doi: 10.3969/j.issn.1007-2993.2023.05.012
Citation: Gao Xinghe, Zhang Feng, Lv Ben, Li Can. Analysis of Structural Internal Force and Settlement on Nonlinear Elastic Foundation Based on Compression Curve[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(5): 590-594. doi: 10.3969/j.issn.1007-2993.2023.05.012

Analysis of Structural Internal Force and Settlement on Nonlinear Elastic Foundation Based on Compression Curve

doi: 10.3969/j.issn.1007-2993.2023.05.012
  • Received Date: 2022-09-22
  • Accepted Date: 2023-05-06
  • Rev Recd Date: 2022-12-19
  • Publish Date: 2023-10-16
  • Foundation settlement is not only harmful to buildings, but also one of the main factors affecting the stress and deformation of superstructure. The layerwise summation method used in engineering settlement calculation takes the compression curve (e-p curve or e-lgp curve) as the input, which better reflects the nonlinearity of soil deformation and has good accuracy. A numerical calculation method of elastic foundation was developed in this research. Based on the compression curve, the tangent elastic modulus was obtained through the derivation of elastic theory, and the nonlinear finite element method was used for calculation. The example shows that this method is essentially the same as the layerwise summation method in the calculation of foundation settlement, and obtains rich results without the cumbersome manual calculation process. The stress and deformation analysis of superstructure can also better reflect the influence of elastic foundation. The calculation method of nonlinear elastic foundation based on compression curve does not need complex geotechnical test, and avoids the disadvantage of simple linear elastic constitutive model, so it has strong practical value.

     

  • loading
  • [1]
    黄绍铭 高大钊. 软土地基与地下工程(第二版)[M]. 北京: 中国建筑工业出版社, 2005.
    [2]
    王林生. 成层弹性地基上板的计算[D]. 南京: 河海大学, 1986.
    [3]
    钱家欢, 殷宗泽. 土工原理与计算(第二版)[M]. 北京: 中国水利水电出版社, 1996.
    [4]
    程 涛,晏克勤,王靖涛. 岩土本构关系的系统化数值方法及其哲学思考[J]. 长江科学院院报,2007,(2):65-67.
    [5]
    SAVVIDES A A,PAPADRAKAKIS M. A computational study on the uncertainty quantification of failure of clays with a modified Cam-Clay yield criterion[J]. SN Applied Sciences,2021,3(6):1-26.
    [6]
    徐舜华,徐光黎,程 瑶. 土的剑桥模型发展综述[J]. 长江科学院院报,2007,(3):27-32.
    [7]
    SL 265—2016 水闸设计规范[S]. 北京: 中国水利水电出版社, 2017.
    [8]
    SL 274—2020 碾压式土石坝设计规范[S]. 北京: 中国水利水电出版社, 2021.
    [9]
    GB 50296—2013 堤防工程设计规范[S]. 北京: 中国计划出版社, 2013.
    [10]
    孙明正,邹金红. 基于e-p曲线的邓肯–张模型建立及参数灵敏度分析[J]. 中州煤炭,2016,(4):74-78.
    [11]
    蒋忠信. 对深圳市地基沉降计算中压缩参数取值的商榷[J]. 岩土工程技术,2003,(1):56.
    [12]
    卢廷浩. 土力学(第二版)[M]. 南京: 河海大学出版社, 2005.
    [13]
    陈开圣,刘宇峰. 分层总和法在路基沉降计算中应注意的几个问题[J]. 岩土工程技术,2005,19(1):43-45.
    [14]
    吴心怡. 高等级公路路堤沉降计算方法研究[D]. 南京: 河海大学, 1995.
    [15]
    高大钊. 土力学与基础工程[M]. 北京: 中国建筑工业出版社, 2002.
    [16]
    尹训强. 结构—地基动力相互作用计算模型的改进及其工程应用[D]. 大连: 大连理工大学, 2013.
    [17]
    曹邱林,陈 蕾,徐 刚. 船闸闸室结构选型计算分析[J]. 长江科学院院报,2012,29(10):108-113.
    [18]
    李炎隆,李守义,丁占峰,等. 基于正交试验法的邓肯–张E-B模型参数敏感性分析研究[J]. 水利学报,2013,44(7):7.
    [19]
    魏匡民,陈生水,李国英,等. 基于状态参数的筑坝粗粒土本构模型[J]. 岩土工程学报,2016,38(4):654-661.
    [20]
    宋万增,宋 力,张晓英. 截面应力内力相互转化的初步研究[J]. 南水北调与水利科技,2007,5(5):145-147.
    [21]
    陈国荣. 有限单元法原理及应用[M]. 北京: 科学出版社, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (61) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return