Volume 37 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Zheng Xing, Ao Dahua, Zhang Sheng, Wei Weiqiong, Yang Wenchao, Xu Yongwang. Field Experimental Study on Compaction Performance of Impervious Soil Material in High Altitude Borrow of an Ultra-high Earth-rockfill Dam[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(5): 595-601. doi: 10.3969/j.issn.1007-2993.2023.05.013
Citation: Zheng Xing, Ao Dahua, Zhang Sheng, Wei Weiqiong, Yang Wenchao, Xu Yongwang. Field Experimental Study on Compaction Performance of Impervious Soil Material in High Altitude Borrow of an Ultra-high Earth-rockfill Dam[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(5): 595-601. doi: 10.3969/j.issn.1007-2993.2023.05.013

Field Experimental Study on Compaction Performance of Impervious Soil Material in High Altitude Borrow of an Ultra-high Earth-rockfill Dam

doi: 10.3969/j.issn.1007-2993.2023.05.013
  • Received Date: 2022-05-13
  • Publish Date: 2023-10-16
  • An impervious soil material borrow of an ultra-high earth rock dam is located at an altitude of 3500 m. In-site compaction test of soil was carried out at this elevation. The tests include the selection of compaction parameters, the influence of variable moisture content on soil compaction characteristics, and the comparative study of compaction effects of different compaction methods. The experimental research shows that when the paving thickness of soil is 35 cm, the greatest degree of compaction is acquired. Considering the design index of soil compaction and cost, the paving thickness is determined as 30~35 cm and rolling times is 10. It is found that when the thickness of soil material is thin, the more rolling times, the greater the disturbance and the worse the compaction degree. Combined with the climatic conditions of the soil borrow, it is found that the loss of soil moisture content is 1.2% in the whole process from soil loading to compaction. By changing the moisture content of soil, the influence of moisture content on the compaction effect is explored, and the range of compactable moisture content of soil in the project is determined. The comparative experimental study of different compaction methods shows that the compaction degree obtained by vibratory flat roller is higher than that by vibratory bump roller under different paving thickness and rolling times.

     

  • loading
  • [1]
    李永红. 特高土石坝防渗土料改性研究与实践[C]//四川省水力发电工程学会2018年学术交流会暨“川云桂湘粤青”六省(区)施工技术交流会论文集. 四川省水力发电工程学会, 2018.
    [2]
    邓 刚,丁 勇,张延亿,等. 土质心墙土石坝沿革及体型和材料发展历程的回顾[J]. 中国水利水电科学研究院学报,2021,19(4):411-423.
    [3]
    郎玲芳,孙 来,郑惠峰,等. 苗尾水电站砾质土心墙料工程特性及碾压试验[J]. 云南水力发电,2017,33(S1):97-101.
    [4]
    李朝政,李 伟,沈 蓉,等. 苗尾水电站高含水率心墙防渗土料碾压试验研究[J]. 水利与建筑工程学报,2013,11(2):158-163.
    [5]
    李朝政,李 伟,陈 江. 苗尾水电站心墙防渗土料压实质量检测方法及控制标准[J]. 水力发电,2011,37(10):51-53.
    [6]
    王泽生,王艳芳,马 欢. 糯扎渡水电站心墙堆石坝填筑料碾压施工参数试验研究[J]. 西北水电,2012,(S2):58-63.
    [7]
    宁占金. 糯扎渡心墙堆石坝超大粒径掺砾土料击实特性及压实质量检测方法研究[J]. 水利水电技术,2014,45(3):8-12.
    [8]
    车维斌,杨金平,江万红,等. 两河口水电站掺砾土料碾压试验分析[J]. 水力发电,2018,44(2):28-32.
    [9]
    武晓杰,施召云. 两河口水电站大坝心墙掺砾土料工艺及碾压试验[J]. 云南水力发电,2016,32(3):33-38.
    [10]
    徐 亮,宋建坤. 两河口水电站心墙料掺砾工艺研究及现场碾压试验[J]. 水电站设计,2014,30(3):60-67.
    [11]
    张倚铭,姚志辉,周孝华. 双江口水电站碾压试验掺砾土料研究[J]. 四川水力发电,2019,38(S2):138-142.
    [12]
    王志强. 粗粒土掺合料掺合工艺与现场碾压试验研究[D]. 武汉: 长江科学院, 2010.
    [13]
    NB/T 35016—2013 土石筑坝材料碾压试验规程[S].
    [14]
    DL/T 5129—2013 碾压式土石坝施工规范[S].
    [15]
    罗文广. 砾石土料碾压设备适应性研究与分析[J]. 四川水力发电,2013,32(5):101-102.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (56) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return