Volume 37 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Yang Zhijun, Liu Jingtang, Hu Jinxin, Hong Ming. Study on Deformation of Surrounding Rock and Stress Characteristics of Lining in Tunnels Passing through Soil-rock Interface[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(6): 649-655. doi: 10.3969/j.issn.1007-2993.2023.06.004
Citation: Yang Zhijun, Liu Jingtang, Hu Jinxin, Hong Ming. Study on Deformation of Surrounding Rock and Stress Characteristics of Lining in Tunnels Passing through Soil-rock Interface[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(6): 649-655. doi: 10.3969/j.issn.1007-2993.2023.06.004

Study on Deformation of Surrounding Rock and Stress Characteristics of Lining in Tunnels Passing through Soil-rock Interface

doi: 10.3969/j.issn.1007-2993.2023.06.004
  • Received Date: 2022-04-07
  • Accepted Date: 2023-08-04
  • Publish Date: 2023-12-08
  • Based on the engineering practice of loess tunnel crossing soil-rock interface, finite element numerical calculation method combined with the distribution law of soil-rock interface during tunnel construction was used to study the influence of spatial distribution position of soil-rock interface on surface displacement and convergence deformation characteristics in tunnel, and the mechanical characteristics and variation law of lining structure were obtained. The results show that when the soil-rock interface is located below the arch bottom, the tunnel excavation range is loess, the surface settlement and surrounding rock deformation are large, and the tension near the arch top of lining is large. When the soil-rock interface is above the top, the influence of tunnel excavation on surface settlement and surrounding rock deformation is basically unchanged. When the soil-rock interface is located near the arch shoulder, the tensile stress of the vault lining is the smallest, and the lining structure is more favorable. When the soil-rock interface is located near the vault, the compressive stress of the lining at the arch waist increases significantly, and the tensile stress at the vault is also large. At this time, the stress of the lining structure is the most unfavorable. Further, according to the total displacement characteristics of the lining structure, the angle of the locking anchor at the arch shoulder can be controlled to 15°~35°, and the angle of the locking anchor at the arch waist and the arch foot can be controlled to about 45°, which can provide a theoretical basis for tunnel design and construction.

     

  • loading
  • [1]
    腾俊洋,唐建新,王进博,等. 层状复合岩体损伤演化规律及分形特征[J]. 岩石力学与工程学报,2018,37(S1):3263-3278.
    [2]
    王启耀,蒋臻蔚. 层状岩体的力学特征和数值模拟方法研究[J]. 公路交通科技,2005,22(9):111-114,118.
    [3]
    刘 科. 层状与非均质岩体中隧道围岩变形和衬砌结构力学特性研究[D]. 成都: 西南交通大学, 2016.
    [4]
    范 雨,赵慧玲,姚旭朋. 穿越上软下硬复合地层交界面的双线盾构隧道开挖稳定性分析[J]. 中国市政工程,2021,(5):100-103, 107, 121-122. doi: 10.3969/j.issn.1004-4655.2021.05.026
    [5]
    邓少军,阳军生. 水平互层岩体隧道稳定性数值分析[J]. 中国科技信息,2019,(16):77-79.
    [6]
    陈庆发,张世雄,王官宝,等. 倾斜薄层岩体巷道围岩松动圈测试研究[J]. 矿山压力与顶板管理,2005,(2):61-62,65.
    [7]
    杨平庆,邵 蔚,王长柏,等. 缓倾泥页岩互层隧道开挖的围岩松动圈形态研究[J]. 水利与建筑工程学报,2018,16(5):48-51,110.
    [8]
    何金峰. 土石交界地层隧道开挖围岩与支护结构稳定性分析[D]. 长沙: 中南大学, 2011.
    [9]
    孙文君,薛少强,肖成志,等. 土石交界地质条件下浅埋隧道的开挖反应研究[J]. 公路工程,2019,44(4):169-173.
    [10]
    张 雄,孙梦青,张 扬. 土石交界地层隧道爆破振动控制技术研究[J]. 公路工程,2020,45(4):162-166.
    [11]
    林炳潮,邓 锷,孟亚锋,等. 土岩交错地层隧道施工爆破围岩振动特性研究[J]. 公路工程,2019,44(6):154-160.
    [12]
    谢 壮,何金峰,石钰锋,等. 偏压地形土石交界地层隧道结构内力测试及支护措施研究[J]. 工程勘察,2013,41(5):23-27.
    [13]
    肖 靖. 土石交界地层浅埋偏压隧道围岩与支护结构稳定性分析[D]. 西安: 长安大学, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views (110) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return