Volume 37 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Wang Hui, Yan Song. Mineral Composition and Microstructure of Completely Decomposed Migmatitic Granite[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(6): 700-707. doi: 10.3969/j.issn.1007-2993.2023.06.012
Citation: Wang Hui, Yan Song. Mineral Composition and Microstructure of Completely Decomposed Migmatitic Granite[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(6): 700-707. doi: 10.3969/j.issn.1007-2993.2023.06.012

Mineral Composition and Microstructure of Completely Decomposed Migmatitic Granite

doi: 10.3969/j.issn.1007-2993.2023.06.012
  • Received Date: 2022-09-23
  • Accepted Date: 2023-07-14
  • Rev Recd Date: 2023-04-11
  • Publish Date: 2023-12-08
  • The microstructure of completely decomposed migmatitic granite (CDMG) with different water contents was studied using scanning electron microscopy, and its mineral composition distribution was obtained through X-ray powder diffraction. The results show that the mineral compositions of CDMG are mainly quartz, feldspar, montmorillonite, illite and kaolinite, with the average content of quartz and feldspar being 28.09% and 44.26% respectively. In the clay minerals, montmorillonite with strong hydrophilicity accounts for the highest proportion of 19.79%. The microstructure of the sample is composed of coarse-grained quartz and feldspar as the skeleton, and laminated and crushed clay minerals as the filling material to form a dense skeleton-filling structure. Through the statistical analysis of the particle morphology and pore distribution data of the sample, it is found that with the increase of moisture content, the content of fine sand keeps increasing and the arrangement of particles tends to be chaotic. The pore content and transfixion rate increased, and the content of the macropore increased significantly. The original filling structure was destroyed and the degree of compactness was greatly reduced due to the expansion potential induced by water absorption of hydrophilic clay minerals.

     

  • loading
  • [1]
    KIM C,KIM T. Behavior of unsaturated weathered residual granite soil with initial water contents[J]. Engineering Geology,2010,113(1):1-10.
    [2]
    ZENG L,BIAN H,SHI Z,et al. Forming condition of transient saturated zone and its distribution in residual slope under rainfall conditions[J]. Journal of Central South University,2017,24(8):1866-1880. doi: 10.1007/s11771-017-3594-6
    [3]
    王 清,唐大雄,张庆云,等. 中国东部花岗岩残积土物质成分和结构特征的研究[J]. 长春地质学院学报,1991,(1):73-81.
    [4]
    吴能森. 结构性花岗岩残积土的特性及工程问题研究[D]. 南京: 南京林业大学, 2005.
    [5]
    GUTIERREZ N H M,NÓBREGA M T,VILAR O M. Influence of the microstructure in the collapse of a residual clayey tropical soil[J]. Bulletin of Engineering Geology and the Environment,2009,68(1):107-116. doi: 10.1007/s10064-008-0180-z
    [6]
    陈秋南,李建新,赵磊军. 南岳地区花岗岩残积土微观特性研究[J]. 地下空间与工程学报,2015,11(S1):119-123.
    [7]
    KONG L,SAYEM H M,TIAN H. Influence of drying-wetting cycles on soil-water characteristic curve of undisturbed granite residual soils and microstructure mechanism by nuclear magnetic resonance (NMR) spin-spin relaxation time (T2) relaxometry[J]. Canadian Geotechnical Journal,2018,55(2):208-216. doi: 10.1139/cgj-2016-0614
    [8]
    SUN Y,TABG L. Use of X-ray computed tomography to study structures and particle contacts of granite residual soil[J]. Journal of Central South University,2019,26(4):938-954. doi: 10.1007/s11771-019-4062-2
    [9]
    安 然,孔令伟,黎澄生,等. 炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律[J]. 岩石力学与工程学报,2020,39(9):1902-1911.
    [10]
    GB/T 50123—2019 土工试验方法标准[S]. 北京: 中国建筑工业出版社, 2019.
    [11]
    ZHANG N,FU J. Experimental study on quantification of clay minerals via X-ray diffraction apparatus[J]. Oil Exploration and Development,1980,6:12-20.
    [12]
    JULINA M,THYAGARAJ T. Quantification of desiccation cracks using X-ray tomography for tracing shrinkage path of compacted expansive soil[J]. Acta Geotechnica,2019,14(1):35-56. doi: 10.1007/s11440-018-0647-4
    [13]
    安爱军,廖靖云. 基于核磁共振和扫描电镜的蒙内铁路膨胀土改良细观结构研究[J]. 岩土工程学报,2018,40(S2):152-156.
    [14]
    尚彦军,吴宏伟,曲永新. 花岗岩风化程度的化学指标及微观特征对比−以香港九龙地区为例[J]. 地质科学,2001,(3):279-294.
    [15]
    尚彦军,王思敬,岳中琦,等. 全风化花岗岩孔径分布–颗粒组成–矿物成分变化特征及指标相关性分析[J]. 岩土力学,2004,(10):1545-1550. doi: 10.3969/j.issn.1000-7598.2004.10.007
    [16]
    黄 凌. 一次冻融黏土力学特性及微观孔隙特性试验研究[D]. 徐州: 中国矿业大学, 2016.
    [17]
    HATTAB M,FLEUREAU J M. Experimental study of kaolin particle orientation mechanism[J]. Géotechnique,2010,60(5):323-331.
    [18]
    袁志辉. 干湿循环下黄土的强度及微结构变化机理研究[D]. 西安: 长安大学, 2015.
    [19]
    潘网生. 黄土优先流渗流特性及斜坡优势滑动面研究[D]. 西安: 长安大学, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (72) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return