Volume 38 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
Tang Liyun, Ding Bing, Zheng Jianguo, Xu Peizhi, Qiu Peiyong. Bearing Capacity of Frozen Soil Pile Foundations in Cold Regions: A State-of-the-Art Review[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(3): 253-262. doi: 10.3969/j.issn.1007-2993.2024.03.001
Citation: Tang Liyun, Ding Bing, Zheng Jianguo, Xu Peizhi, Qiu Peiyong. Bearing Capacity of Frozen Soil Pile Foundations in Cold Regions: A State-of-the-Art Review[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(3): 253-262. doi: 10.3969/j.issn.1007-2993.2024.03.001

Bearing Capacity of Frozen Soil Pile Foundations in Cold Regions: A State-of-the-Art Review

doi: 10.3969/j.issn.1007-2993.2024.03.001
  • Received Date: 2023-12-22
  • Publish Date: 2024-06-12
  • In cold regions, seasonal temperature variations, atmospheric warming, and intensified human engineering activities often lead to disasters such as frost heaving, thaw settlement, tilting, and concrete cracking in pile foundations. These incidents often result in the decrease of the bearing capacity of pile foundations, posing new and greater challenges to pile foundations in cold regions. The current research status of the bearing capacity of frozen soil pile foundations was summarized. Based on the unique properties of frozen soil, the main force types and characteristics of frozen soil pile foundation systems were described; the changing mechanisms of mechanical properties at the pile-frozen soil interface were detailed in terms of experimental testing and the load transfer mechanism; the variations in the bearing capacity of frozen soil pile foundations and the methods for analysis and prediction were illustrated from the perspectives of experimental tests, theoretical analyses and numerical simulations; main monitoring techniques for temperature, moisture, stress and strain in the pile-frozen soil system were also described. Finally, prospects for future research on the bearing characteristics of frozen soil pile foundations in cold regions were presented.

     

  • loading
  • [1]
    ZHANG, T, BARRY, R G, KNOWLES, K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere[J]. Polar Geography,2008,31(1-2):47-68. doi: 10.1080/10889370802175895
    [2]
    陈肖柏, 刘建坤. 土的冻结作用与地基[M]. 北京: 科学出版社, 2006.
    [3]
    徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.
    [4]
    王万平, 张熙胤, 陈兴冲, 等. 考虑冻土效应的桥梁桩–土动力相互作用研究现状与展望[J]. 冰川冻土, 2021, 42(4), 1213-1219.
    [5]
    刘乃飞, 李 宁, 何 敏, 等. 基于水–热–力合模型的钻孔灌注桩承载力影响因素分析[J]. 冰川冻土,2014,36(6):1471-1478.
    [6]
    王 旭, 蒋代军, 赵新宇, 等. 多年冻土区未回冻钻孔灌注桩承载性质试验研究[J]. 岩土工程学报,2005,27(1):81-84. doi: 10.3321/j.issn:1000-4548.2005.01.013
    [7]
    张玺彦, 盛 煜, 黄 龙, 等. 切向冻胀力的研究现状及展望 [J]. 冰川冻土, 2020, 42(3):13.
    [8]
    吴紫汪, 王雅卿, 沈忠言, 等. 基础与冻土间冻结强度的实验研究[C]// 第二届全国冻土学术会议论文选集. 兰州: 甘肃人民出版社, 1981.
    [9]
    孙建波, 徐春华, 徐学燕. 冻土地区工程桩负摩阻力试验研究 [J]. 施工技术, 2011, 40(7):4.
    [10]
    石泉彬, 杨 平, 谈金忠, 等. 冻土与结构接触面冻结强度压桩法测定系统研制及试验研究[J]. 岩土工程学报,2019,41(1):139-147.
    [11]
    SUN W, WU A, HOU K, et al. Real-time observation of meso-fracture process in backfill body during mine subsidence using X-ray CT under uniaxial compressive conditions[J]. Construction and Building Materials,2016,113:153-162. doi: 10.1016/j.conbuildmat.2016.03.050
    [12]
    李永波, 张鸿儒, 全克江. 冻土–桩动力相互作用模型试验系统研制[J]. 岩土工程学报,2012,34(04):774-780.
    [13]
    LIU J, LV P, CUI Y, et al. Experimental study on direct shear behavior of frozen soil-concrete interface[J]. Cold regions science and technology,2014,104:1-6.
    [14]
    TANG L, DU Y, LIU L , et al. Experimental study of the frozen soil–structure interface shear strength deterioration mechanism during thawing[J]. Arabian Journal of Geosciences, 2021, 14:2704.
    [15]
    唐丽云, 王 鑫, 邱培勇, 等. 冻土区土石混合体冻融交界面剪切性能研究[J]. 岩土力学,2020,41(10):3225-3235.
    [16]
    陈 拓, 赵光思, 赵 涛. 寒区黏土与结构接触面冻结强度特性试验研究[J]. 地震工程学报,2018,40(3):512-518. doi: 10.3969/j.issn.1000-0844.2018.03.512
    [17]
    温 智, 俞祁浩, 张建明, 等. 青藏直流输变电工程基础冻结强度试验研究[J]. 岩土工程学报,2013,35(12):2262-2267.
    [18]
    何鹏飞, 马 巍, 穆彦虎, 等. 冻融循环对冻土–混凝土界面冻结强度影响的试验研究[J]. 岩土工程学报,2020,42(2):299-307. doi: 10.11779/CJGE202002011
    [19]
    张明义, 白晓宇, 高 强, 等. 黏性土中桩–土界面受力机制室内试验研究[J]. 岩土力学,2017,38(8):2167-2174.
    [20]
    唐丽云, 杨更社. 多年冻土区桩基竖向承载力的预报模型[J]. 岩土力学,2009,30(z2):169-173.
    [21]
    汪仁和, 王 伟, 陈永峰. 冻土中单桩抗压承载力模型试验研究[J]. 冰川冻土,2005,27(2):188-193.
    [22]
    WOTHERSPOONA L M, SRITHARAN S, PENDER M J. Modeling the response of cyclically loaded bridge columns embedded in warm and seasonally frozen soils[J]. Engineering Structures,2010,32(4):933-943. doi: 10.1016/j.engstruct.2009.12.019
    [23]
    张军伟, 马 巍, 王大雁, 等. 青藏高原多年冻土区钻孔灌注桩承载特性试验研究[J]. 冰川冻土,2008,30(3):482-487.
    [24]
    MORGENSTERN N R, ROGGENSACK W D, WEAVER J S. The behaviour of friction piles in ice and ice-rich soils[J]. Canadian Geotechnical Journal,1980,17(3):405-415. doi: 10.1139/t80-047
    [25]
    励国良, 赵西生, 王化卿, 等. 多年冻土地区桩基试验研究[J]. 铁道学报,1980,2(1):12-16. doi: 10.3321/j.issn:1001-8360.1980.01.008
    [26]
    刘靖波, 张辰熙. 多年冻土地区桩基础承载力试验研究[J]. 低温建筑技术,2013(7):119-120. doi: 10.3969/j.issn.1001-6864.2013.07.046
    [27]
    胡海东, 吴亚平, 孙永宁, 等. 冻土区桩侧水热效应对桩基稳定性影响的模型试验研究[J]. 科学技术与工程,2017,17(17):325-329. doi: 10.3969/j.issn.1671-1815.2017.17.050
    [28]
    TANG L, WANG K, DENG L, et al. Axial loading behaviour of laboratory concrete piles subjected to permafrost degradation[J]. Cold Regions Science and Technology,2019,166:102820. doi: 10.1016/j.coldregions.2019.102820
    [29]
    TANG L, WANG X, JIN L, et al. Frost heave and thawing settlement of frozen soils around concrete piles: a laboratory model test[J]. Journal of Testing and Evaluation, 2021, 49(2):949-966.
    [30]
    赖远明, 朱元林, 吴紫汪. 桩基冻胀力三维问题的积分方程解法[J]. 铁道学报,1998,20(6):93-97 doi: 10.3321/j.issn:1001-8360.1998.06.016
    [31]
    何 菲, 王 旭, 蒋代军, 等. 桩基冻胀力的三维黏弹性问题研究[J]. 岩土力学,2015,36(9):2510-2516.
    [32]
    TANG L, YANG L, QIU P, et al. Degradation characteristics and bearing capacity model of pile in degraded permafrost[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering,2022,175(4):414-425. doi: 10.1680/jgeen.20.00014
    [33]
    贾艳敏, 徐 达, 郭红雨. 相变效应对灌注桩与冻土回冻过程影响的研究[J]. 工程力学,2010,27(S1):145-149
    [34]
    XIONG F, YANG Z J. Effects of seasonally frozen soil on the seismic behavior of bridges[J]. Cold Regions Science and Technology, 2008, 54(1): 44-53.
    [35]
    吴志坚, 车爱兰, 陈 拓, 等. 青藏铁路多年冻土区桥梁桩基础地震响应的试验研究与数值分析[J]. 岩土力学,2010(11):3516-3524. doi: 10.3969/j.issn.1000-7598.2010.11.027
    [36]
    唐丽云, 杨更社. 桩基施工对冻土地区桩基热影响分析[J]. 岩土工程学报,2010,32(9):1350-1353.
    [37]
    TANG L, YANG L, WANG X, et al. Numerical analysis of frost heave and thawing settlement of the pile-soil system in degraded permafrost region[J]. Environmental Earth Sciences,2021,80:693. doi: 10.1007/s12665-021-09999-4
    [38]
    马如远, 陈丽萍, 柴国钟. 基于单片机和传感器技术的智能钢构桥梁温度监控系统[J]. 电脑知识与技术,2013,9(11):2664-2668, 2681.
    [39]
    王艳辉, 张 佼, 王 奇, 等. 利用串并联电阻法实现NTC热敏电阻测温线性化的探究[J]. 物理与工程,2017,27(S1):256-259.
    [40]
    TANG L, WANG K, JIN L, et al. A resistivity model for testing unfrozen water content of frozen soil[J]. Cold Regions Science and Technology,2018,153:55-63. doi: 10.1016/j.coldregions.2018.05.003
    [41]
    严昌盛, 朱德华, 马燮铫, 等. 基于雷达短时临近降雨预报的王家坝洪水预报研究[J]. 水利水电技术,2020,51(9):13-23.
    [42]
    李 尧. 桥梁基桩检测中超声波法和低应变法的应用对照分析[J]. 四川水泥,2015(8):348. doi: 10.3969/j.issn.1007-6344.2015.08.340
    [43]
    张 磊, 施 斌, 张 丹, 等. 基于BOTDR的滑坡抗滑桩工作状态评价及分析[J]. 工程地质学报,2019,27(6):1464-1472.
    [44]
    崔咏军, 孙阳阳, 谢渊洁, 等. 光纤测斜技术在基坑工程监测中的应用研究[J]. 工程质量,2019,37(3):43-46, 52. doi: 10.3969/j.issn.1671-3702.2019.03.011
    [45]
    WANG H, XIANG P, JIANG L. Strain transfer theory of industrialized optical fiber-based sensors in civil engineering: A review on measurement accuracy, design and calibration[J]. Sensors and Actuators A: Physical,2019,285:414-426. doi: 10.1016/j.sna.2018.11.019
    [46]
    黄晓维, 郑建国, 于永堂, 等. BOTDR分布式光纤传感技术在桩基测试中的应用研究[J]. 岩土工程技术,2021,35(5):281-285, 293. doi: 10.3969/j.issn.1007-2993.2021.05.001
    [47]
    张 龙, 郑建国, 刘争宏, 等. 分布式光纤测试灌注桩内力的光纤植入技术研究[J]. 施工技术(中英文),2022,51(7):113-117.
    [48]
    杨立辉. 桥梁结构无损检测技术分析[J]. 科技创新导报,2011(17):35. doi: 10.3969/j.issn.1674-098X.2011.17.023
    [49]
    严 斌. 桥梁结构基于电涡流热成像的内部钢筋锈蚀度检测应用技术[D]. 重庆:重庆交通大学, 2020.
    [50]
    刘 冉. 道路与桥梁施工中质量检测技术的应用[J]. 运输经理世界,2021(25):98-100.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (168) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return