Volume 38 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Li Lin, Xie Jinhong, Yang Shangchuan. Numerical Simulation and Laboratory Tests of Unloading Stress Path of Fly Ash Stratum Tunnel Excavation[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(5): 584-591. doi: 10.3969/j.issn.1007-2993.2024.05.013
Citation: Li Lin, Xie Jinhong, Yang Shangchuan. Numerical Simulation and Laboratory Tests of Unloading Stress Path of Fly Ash Stratum Tunnel Excavation[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(5): 584-591. doi: 10.3969/j.issn.1007-2993.2024.05.013

Numerical Simulation and Laboratory Tests of Unloading Stress Path of Fly Ash Stratum Tunnel Excavation

doi: 10.3969/j.issn.1007-2993.2024.05.013
  • Received Date: 2023-06-06
  • Accepted Date: 2023-12-25
  • Rev Recd Date: 2023-10-16
  • Available Online: 2024-10-09
  • Publish Date: 2024-10-09
  • The stress path of soil is closely tied to deformation during dynamic tunnel excavation. A three-dimensional model of tunnel construction was created using the FLAC3D finite difference software. The double-side wall guide pit method was used to simulate the excavation process of a large-section tunnel and measure the resulting soil stress state. The changing laws of the stress state were then investigated based on the numerical simulation results. Indoor triaxial tests were conducted on soil reinforced with fly ash cement under different stress paths to replicate the stress and deformation of soil units during tunnel excavation and unloading. Unreinforced soil specimens were used as a control group. The numerical simulations and laboratory test results reveal that the stress paths of the surrounding rock unit soil at monitoring points are complex, and can be roughly divided into two categories: the process of constant confining pressure unloading axial pressure and constant confining pressure rising axial pressure. The cement-reinforced specimens showed less deformation and no signs of failure, while the unreinforced specimens were damaged during the stress path tests of different soil positions within the simulated surrounding rock unit.

     

  • loading
  • [1]
    张 梅, 何志军, 张民庆, 等. 高地应力软岩隧道变形控制设计与施工技术[J]. 现代隧道技术,2012,49(6):13-22,69. doi: 10.3969/j.issn.1009-6582.2012.06.003
    [2]
    薛 勇, 屈卫鹏, 孟哲玮, 等. 高地应力软岩隧道开挖施工技术及受力变形分析[J]. 现代隧道技术,2018,55(S2):349-354.
    [3]
    苑绍东, 杨 林, 黄 舰. 并行隧道工程中后行隧道分步开挖对先行隧道横纵向地表沉降的影响研究[J]. 现代隧道技术,2018,55(6):80-86,100.
    [4]
    孙歆硕, 乔 兰. 不同应力路径下地下隧道强度及开挖效应研究[J]. 金属矿山,2008(12):42-45,50. doi: 10.3321/j.issn:1001-1250.2008.12.012
    [5]
    马 茹. 点锚固锚固浅埋隧道解析解[J]. 隧道与地下空间技术,2020,100:103402.
    [6]
    郑可跃, 施成华, 赵前进, 等. 考虑围压效应和中主应力的深埋软岩隧道弹塑性解[J]. 岩石力学与工程学报, 2023.
    [7]
    蒋望涛, 马勤国, 姜海强, 等. 寒区隧道应力和位移弹塑性统一解及对比分析[J]. 铁道学报,2023,45(7):161-168. doi: 10.3969/j.issn.1001-8360.2023.07.019
    [8]
    李政林, 吴瑞祥, 李龙剑, 等. 基于损伤理论的隧道围岩松动圈确定方法[J]. 地下空间与工程学报,2011,7(6):1060-1064,1090. doi: 10.3969/j.issn.1673-0836.2011.06.003
    [9]
    黄 锋, 朱合华, 徐前卫. 含软弱夹层隧道围岩松动破坏模型试验与分析[J]. 岩石力学与工程学报,2016,35(A1):2915-2924.
    [10]
    刘淑红, 范金录, 朱永全. 非圆形隧道毛洞围岩的应力和塑性区[J]. 中国铁道科学,2022,43(3):78-85. doi: 10.3969/j.issn.1001-4632.2022.03.09
    [11]
    乔亚飞, 肖颖鸣, 丁文其, 等. 跨断层隧道施工应力路径识别与扰动分析[J]. 防灾减灾工程学报,2023,43(1):50-59.
    [12]
    CAI M. Influence of stress path on tunnel excavation response numerical tool selection and modeling strategy[J]. Tunnelling and Undergroud Space Technology,2008,23(6):618-628. doi: 10.1016/j.tust.2007.11.005
    [13]
    蒋明镜, 王富周, 朱合华. 考虑尾隙的盾构隧道土压力离散元数值分析[J]. 地下空间与工程学报,2010,6(1):28-32. doi: 10.3969/j.issn.1673-0836.2010.01.005
    [14]
    张春生, 侯 靖, 朱永生, 等. 深埋隧洞围岩应力分布与破坏机理[J]. 现代隧道技术,2011,48(3):7-13. doi: 10.3969/j.issn.1009-6582.2011.03.002
    [15]
    黎春林, 缪林昌. 盾构隧道施工土体塑性区解析法研究[J]. 中国矿业大学学报,2014,43(3):402-408.
    [16]
    路德春, 曹胜涛, 张 波, 等. 隧道开挖围岩土压力拱效应分析[J]. 地下空间与工程学报,2015,11(6):1421-1430,1436.
    [17]
    张云军, 宰金珉, 王旭东. 隧道开挖对周围土体的影响分析[J]. 建筑结构,2006,36(S1):833-835.
    [18]
    阿卜杜拉, 杜修力, 田 雨, 等. 盾构隧道开挖过程中土的应力路径试验研究[J]. 现代隧道技术,2020,57(S1):772-779.
    [19]
    张宏博, 宋修广, 黄茂松, 等. 不同卸荷应力路径下岩体破坏特征试验研究[J]. 山东大学学报: 工学版,2007,37(6):83-86.
    [20]
    王 兴, 孔 亮, 李学丰. 砂土非共轴本构模型及其在地基承载力方面的应用[J]. 岩土工程学报,2020,42(5):892-899. doi: 10.11779/CJGE202005011
    [21]
    赵龙涛. 盾构隧道开挖过程中土体主应力轴旋转影响研究[D]. 北京:北京交通大学, 2012.
    [22]
    JGJ/T 233—2011 水泥土配合比设计规程[S].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (40) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return