Citation: | Ou Fanyi, Fei Jianbo, Ma Weibin, Chen Xiangsheng. Influence of Loading Conditions and Particle Size on Stick-Slip Characteristics of Granular Materials[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(5): 592-597. doi: 10.3969/j.issn.1007-2993.2024.05.014 |
[1] |
BYERLEE J D, SUMMERS R. Stable sliding preceding stick-slip on fault surfaces in granite at high pressure[J]. Pure & Applied Geophysics,1975,113(1):63-68.
|
[2] |
王绳祖, 张 流. 剪切破裂与粘滑——浅源强震发震机制的研究[J]. 地震地质,1984(2):63-73.
|
[3] |
徐锡伟, 于贵华, 王 峰, 等. 1966年邢台地震群的发震构造模型—新生断层形成? 先存活断层摩擦粘滑?[J]. 中国地震,2000,16(4):15.
|
[4] |
邵同宾, 嵇少丞. 俯冲带地震诱发机制: 研究进展综述[J]. 地质论评,2015,61(2):245-268.
|
[5] |
OKAZAKI K, KATAYAMA I. Slow stick slip of antigorite serpentinite under hydrothermal conditions as a possible mechanism for slow earthquakes[J]. Geophysical Research Letters,2015,42(4):1099-1104. doi: 10.1002/2014GL062735
|
[6] |
ADJEMIAN F, EVESQUE P, et al. Experimental study of stick-slip behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2004,28(6):501-530. doi: 10.1002/nag.350
|
[7] |
BRACE W F, BYERLEE J D. Stick-Slip as a Mechanism for Earthquakes[J]. Science, 1966, 153(3739): 990-992.
|
[8] |
DIETERICH J H. Time-dependent friction and the mechanics of stick-slip[J]. Pure and Applied Geophysics,1978,116(4):790-806.
|
[9] |
RUINA A. Slip instability and state variable friction laws[J]. Journal of Geophysical Research Solid Earth,1983,88(B12):10359-10370. doi: 10.1029/JB088iB12p10359
|
[10] |
KARNER S L, MARONE C. Effects of Loading Rate and Normal Stress on Stress Drop and Stick‐Slip Recurrence Interval[M]. Washington DC: American Geophysical Union(AGU), 2000.
|
[11] |
SCHAFF D P, BEROZA G C, SHAW B E. Postseismic response of repeating aftershocks[J]. Geophysical Research Letters,2013,25(24):4549-4552.
|
[12] |
宋义敏, 马少鹏, 杨小彬, 等. 断层黏滑动态变形过程的实验研究[J]. 地球物理学报,2012,55(1):171-179. doi: 10.6038/j.issn.0001-5733.2012.01.016
|
[13] |
董 鹏, 夏开文, 郭彦双. 平直断层黏滑及动态破裂扩展的实验研究[J]. 岩石力学与工程学报,2018,37(A2):8.
|
[14] |
赵扬锋, 荆 刚, 樊 艺, 等. 断层黏滑失稳过程微震与电荷信号时频特征研究[J]. 岩石力学与工程学报,2020,39(7):1385-1395.
|
[15] |
王 时, 王 想, 陈定发, 等. 大尺度雁列断层粘滑运动数值模拟[J]. 地震地磁观测与研究,2018,39(6):23-30.
|
[16] |
王学滨, 钱帅帅, 薛承宇, 等. 基于速率–状态依赖摩擦定律的平直走滑断层黏滑过程的连续–非连续方法模拟[J]. 地球物理学进展,2022,37(1):443-449.
|
[17] |
赵 永, 赵乾百, 王述红, 等. 不同温度场下断层黏滑失稳过程模拟[J]. 东北大学学报: 自然科学版,2022,43(10):1453-1460.
|
[18] |
GAO K, GUYER R, ROUGIER E, et al. From stress chains to acoustic emission[J]. Physical Review Letters,2019,123(4):048003.1-048003.5.
|
[19] |
DOROSTKAR O, CARMELIET J. Grain friction controls characteristics of seismic cycle in faults with granular gouge[J]. Journal of Geophysical Research: Solid Earth,2019,124(7):6475-6489. doi: 10.1029/2019JB017374
|
[20] |
CASAS N, MOLLON G, DAOUADJI A. DEM analyses of cemented granular fault gouges at the onset of seismic sliding: peak strength, development of shear zones and kinematics[J]. Pure and Applied Geophysics,2022,179(2):679-707. doi: 10.1007/s00024-021-02934-5
|
[21] |
吕 征. 颗粒物模拟断层粘滑运动机制的实验研究[D]. 北京: 清华大学, 2019.
|
[22] |
王弘起, 孙杰龙, 李大卫, 等. 不同含水率高填方黄土抗剪强度试验研究[J]. 岩土工程技术,2022,36(6):507-510. doi: 10.3969/j.issn.1007-2993.2022.06.015
|
[23] |
郝保钦, 张昌锁, 王晨龙, 等. 岩石PFC2D模型细观参数确定方法研究[J]. 煤炭科学技术,2022,50(4):132-141.
|
[24] |
后浩斌, 李 盛, 尤著刚, 等. 基于PFC2D的高填黄土减载明洞土体固结蠕变分析[J]. 科学技术与工程,2022,22(32):14360-14369.
|
[25] |
石 崇, 张 强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[J]. 岩土力学,2018(S2):36.
|
[26] |
OZBAY A, CABALAR A F. Effects of triaxial confining pressure and strain rate on stick-slip behavior of a dry granular material[J]. Granular Matter,2016,18(3):60. doi: 10.1007/s10035-016-0664-7
|
[27] |
崔德山, 陈 琼, 项 伟, 等. 干模式下颗粒粘滑震动试验研究[J]. 西南交通大学学报,2019,54(1):82-90.
|
[28] |
张培震, 徐锡伟, 闻学泽, 等. 2008年汶川8.0级地震发震断裂的滑动速率, 复发周期和构造成因[J]. 地球物理学报,2008,51(4):1066-1073.
|
[29] |
HIGASHI N, SUMITA I. Experiments on granular rheology: Effects of particle size and fluid viscosity[J]. Journal of Geophysical Research Solid Earth, 2009, 114(B4):B04413:1-B04413:18.
|
[30] |
ALSHIBLI K A, ROUSSEL L E. Experimental investigation of slip‐stick behaviour in granular materials[J]. International Journal for Numerical & Analytical Methods in Geomechanics,2010,30(14):1391-1407.
|