Volume 38 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Zhang Xin, Ji Haifeng, Yang Zuoqing, Zhu Yanpeng, Liu Dongrui. Experimental Study on Engineering Characteristics of Fluidized Solidified Soil Containing Collapsible Loess and Gravel[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(5): 611-617. doi: 10.3969/j.issn.1007-2993.2024.05.017
Citation: Zhang Xin, Ji Haifeng, Yang Zuoqing, Zhu Yanpeng, Liu Dongrui. Experimental Study on Engineering Characteristics of Fluidized Solidified Soil Containing Collapsible Loess and Gravel[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(5): 611-617. doi: 10.3969/j.issn.1007-2993.2024.05.017

Experimental Study on Engineering Characteristics of Fluidized Solidified Soil Containing Collapsible Loess and Gravel

doi: 10.3969/j.issn.1007-2993.2024.05.017
  • Received Date: 2023-04-21
  • Accepted Date: 2023-11-08
  • Rev Recd Date: 2023-10-22
  • Available Online: 2024-10-09
  • Publish Date: 2024-10-09
  • To eliminate the defects of traditional backfilling methods and materials, combined with the characteristics of collapsible loess area, the premixed fluidized solidified soil with collapsible loess and gravel as aggregate was prepared. The influence of different loess-to-gravel (L/G), water-to-solid (W/S) and binder-to-aggregate (B/A) ratios on the workability and mechanical properties of the premixed fluid solidified soil was analyzed by carrying out flowability and unconfined compressive strength tests. The permeability test and collapsibility test were conducted to discuss the performance change of the proposed material after solidification and water exposure. The main conclusions are as follows: (1) For certain fixed cementitious material content, with the increase of collapsible loess content, the amount of water required to meet the flowability requirements of the mixture also increases, but the strength of the sample decreases as a whole. (2) The increase of the content of cementitious materials improves the strength of the sample, but reduces the flowability of the mixture, especially for the mixture with large L/G ratio and relatively low W/S ratio. (3) Premixed fluidized solidified soil made with collapsible loess and gravel which meets the requirements of flowability and minimum strength also meets the requirements of impermeability and collapsibility in the relevant specifications. (4) According to the test results, after W/S ratio is adjusted to meet the flowability requirement, the fluidized premixed solidified soil with L/G ratio between 1.50 and 1.86 and B/A ratio not less than 0.06 has good workability and mechanical properties.

     

  • loading
  • [1]
    LING T C, KALIYAVARADHAN S K, POON C S. Global perspective on application of controlled low-strength material (CLSM) for trench backfilling - An overview[J]. Construction and Building Materials,2018,158:535-548. doi: 10.1016/j.conbuildmat.2017.10.050
    [2]
    王英军, 黄昌乾. 肥槽回填土常见工程问题与处理方法[J]. 岩土工程技术,2019,33(2):84-88. doi: 10.3969/j.issn.1007-2993.2019.02.006
    [3]
    American Concrete Institute. ACI 116 Cement and Concrete Terminology[S].
    [4]
    American Concrete Institute. ACI 229 Controlled Low-Strength Materials(CLSM) [S].
    [5]
    BAKER T. Frost penetration in flowable fill used in pipe trench backfill[C]// HOWARD A K, HITCH J L. eds. Proceedings of the Symposium on design and application of controlled low-strength materials (flowable fill). ASTM STP 1331: American Society for Testing and Materials, 1998.
    [6]
    BENZAAZOUA M, FALL M, BELEM T. A contribution to understanding the hardening process of cemented pastefill[J]. Minerals Engineering,2004,17(2):141-152. doi: 10.1016/j.mineng.2003.10.022
    [7]
    FALL M, BENZAAZOUA M. Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization[J]. Cement and Concrete Research,2005,35(2):301-314. doi: 10.1016/j.cemconres.2004.05.020
    [8]
    GHATAORA G S, ALOBAIDI I M. Assessment of the performance of trial trenches backfilled with cementitious materials[J]. International Journal of Pavement Engineering,2000,1(4):297-316. doi: 10.1080/10298430008901712
    [9]
    BOUZALAKOS S, DUDENEY A, CHEESEMAN C R. Controlled low-strength materials containing waste precipitates from mineral processing[J]. Minerals Engineering,2008,21(4):252-263. doi: 10.1016/j.mineng.2007.09.006
    [10]
    CLAISSE P, GANJIAN E, TYRER M. The use of secondary gypsum to make a controlled low strength material[J]. The Open Construction and Building Technology Journal,2009,2(1):294-305. doi: 10.2174/1874836800802010294
    [11]
    FUJITA R, HORIGUCHI T, KUDO T, et al. Applicability of CLSM with incinerated sewage sludge ash and crushed-stone powder[J]. Journal of materials in civil engineering,2011,23(6):767-771. doi: 10.1061/(ASCE)MT.1943-5533.0000201
    [12]
    李 飞, 刘晨辉, 吴英彪, 等. 建筑垃圾再生材料对可控低强材料(CLSM)性能影响研究[J]. 混凝土,2018(8):71-73,78. doi: 10.3969/j.issn.1002-3550.2018.08.017
    [13]
    ZHANG J, WANG J, LI X, et al. Rapid-hardening controlled low strength materials made of recycled fine aggregate from construction and demolition waste[J]. Construction and Building Materials,2018,173(10):81-89.
    [14]
    QIAN J, SHU X, DONG Q, et al. Laboratory characterization of controlled low-strength materials[J]. Materials and Design,2015,65:806-813. doi: 10.1016/j.matdes.2014.10.012
    [15]
    高文生, 梅国雄, 周同和, 等. 基础工程技术创新与发展[J]. 土木工程学报,2020,53(6):97-121.
    [16]
    T/BGEA 001—2019 预拌流态固化土填筑工程技术标准[S].
    [17]
    周永祥, 王继忠. 预拌固化土的原理及工程应用前景[J]. 新型建筑材料,2019,46(10):117-120. doi: 10.3969/j.issn.1001-702X.2019.10.027
    [18]
    陈容华, 甄朋民. 基于粉质黏土的预拌流态固化土的影响因素分析[J]. 重庆建筑,2020,19(9):32-36. doi: 10.3969/j.issn.1671-9107.2020.09.32
    [19]
    黄明利, 杨 泽, 谭忠盛, 等. 明挖法地下装配式结构接缝防水技术探讨[J]. 中国工程科学,2017,19(6):139-147.
    [20]
    王丽筠, 孙伟东, 文劲博. 预拌流态固化土在深基坑回填工程中应用[J]. 建筑技术,2021,52(4):460-461. doi: 10.3969/j.issn.1000-4726.2021.04.020
    [21]
    张旭光. 北京城市副中心长螺旋压灌预拌流态固化土复合地基研究[J]. 建筑技术开发,2018,45(2):59-62. doi: 10.3969/j.issn.1001-523X.2018.02.030
    [22]
    刘成龙. 新型预拌流态固化土性能及回填施工工艺[J]. 山东交通学院学报,2021,29(4):91-98. doi: 10.3969/j.issn.1672-0032.2021.04.013
    [23]
    JGJ/T 233—2011 水泥土配合比设计规程 [S].
    [24]
    陈瑞敏, 简文彬, 张小芳, 等. CSFG-FR协同作用改良淤泥固化土性能试验研究[J]. 岩土力学,2022(4):1-11.
    [25]
    SHEEN Y N, HUANG L J, WANG H Y, et al. Experimental study and strength formulation of soil-based controlled low-strength material containing stainless steel reducing slag[J]. Construction and Building Materials,2014,54(3):1-9.
    [26]
    张伟锋, 刘清秉, 蔡松桃. 用HEC固化剂加固黄土的试验研究[J]. 人民长江,2009,40(3):56-59. doi: 10.3969/j.issn.1001-4179.2009.03.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (40) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return