Volume 38 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
Kang Hengyi. Application of a Modified Particle Swarm Optimization Algorithm with Early-Stopping Error Function Summation Mechanism[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(6): 662-671. doi: 10.3969/j.issn.1007-2993.2024.06.005
Citation: Kang Hengyi. Application of a Modified Particle Swarm Optimization Algorithm with Early-Stopping Error Function Summation Mechanism[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(6): 662-671. doi: 10.3969/j.issn.1007-2993.2024.06.005

Application of a Modified Particle Swarm Optimization Algorithm with Early-Stopping Error Function Summation Mechanism

doi: 10.3969/j.issn.1007-2993.2024.06.005
  • Received Date: 2023-11-17
  • Accepted Date: 2024-06-19
  • Rev Recd Date: 2024-05-21
  • Publish Date: 2024-12-06
  • The direct calibration of constitutive models requires that the model parameters have clear physical significance, which corresponds to the geometric interpretation of the testing data. However, for the complex constitutive models with multiple hyperparameters, the optimization technique shall be applied to calibrate those parameters. The particle swarm optimization (PSO) was utilized, which can calibrate the model parameters based on raw data of the stress-strain curves. Technical details of properly implementing the algorithm were illustrated, which focuses on the quantity of particles, and the data requirements for the von Wolfersdorff hypoplastic model and the Drucker-Prager elastoplastic model. Also, the behavior of the PSO algorithm in analyzing the real experimental data was discussed. Since the calculation of the error function is a summation, the stress integration can be terminated for those particles, whose error function has exceeded its historical optimum or reached an overflow state. The early-stopping mechanism was proved to significantly improve computation efficiency.

     

  • loading
  • [1]
    VON WOLFFERSDORFF P A. A hypoplastic relation for granular materials with a predefined limit state surface[J]. Mechanics of Cohesive Frictional Materials, 1996,1(3):251-271.
    [2]
    MASÍN D. A hypoplastic constitutive model for clays with meta-stable structure[J]. Canadian Geotechnical Journal,2007,44(3):363-375. doi: 10.1139/t06-109
    [3]
    季 慧, 金银富, 尹振宇, 等. 遗传算法改进及其在岩土参数反分析中的应用[J]. 计算力学学报,2018,35(2):224-229.
    [4]
    陈昌富, 龚晓南. 混沌扰动启发式蚁群算法及其在边坡非圆弧临界滑动面搜索中的应用[J]. 岩石力学与工程学报,2004(20):3450-3453.
    [5]
    阮永芬, 高春钦, 刘克文, 等. 基于粒子群算法优化小波支持向量机的岩土力学参数反演[J]. 岩土力学,2019,40(9):3662-3669.
    [6]
    PAL S, WATHUGALA G W, KUNDU S. Calibration of a constitutive model using genetic algorithms[J]. Computers & Geotechnics, 1996, 19(4): 325-348.
    [7]
    PEDROSO D M, WILLIAMS D J. Automatic calibration of soil–water characteristic curves using genetic algorithms[J]. Computers & Geotechnics, 2011, 38(3): 330-340.
    [8]
    李 宁. 粒子群优化算法的理论分析与应用研究[D]. 武汉: 华中科技大学, 2006.
    [9]
    李晓龙, 王复明, 李晓楠. 岩土工程弹塑性反分析的改进粒子群算法[J]. 采矿与安全工程学报,2009,26(1):50-54.
    [10]
    杨文东, 张强勇, 李术才, 等. 粒子群算法在时效变形参数反演中的应用[J]. 中南大学学报(自然科学版),2013,44(1):282-288.
    [11]
    黄 伟, 刘 华. 基于粒子群优化-高斯过程回归的智能岩土体参数快速反演方法[J]. 土工基础,2016,30(2):196-200.
    [12]
    袁克阔. 粒子群算法改进及内变量本构模型参数反演[J]. 煤田地质与勘探,2017,45(2):112-117.
    [13]
    姚亚锋, 李湘炜, 林 键, 等. 基于改进粒子群算法的冻土Burgers蠕变损伤模型及参数模糊随机优化方法:CN114595620A[P]. 2022-06-07.
    [14]
    KENNEDY J, EBERHART R C. Particle swarm optimization [C]// Proceedings of the IEEE Conference on Neural Networks, IV. Perth: IEEE Press, 1995: 1942−1948.
    [15]
    张丽平, 俞欢军, 陈德钊, 等. 粒子群优化算法的分析与改进[J]. 信息与控制,2004,33(5):513-517.
    [16]
    宋梦培, 莫礼平, 周恺卿. 惯性权值和学习因子对标准PSO算法性能的影响[J]. 吉首大学学报(自然科学版),2019,40(4):24-32.
    [17]
    SHI Y H , EBERHART R C . A modified particle swarm optimizer[C]//Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Conference on. IEEE, 2002.
    [18]
    WICHTMANN T, TRIANTAFYLLIDIS T. An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part I—tests with monotonic loading and stress cycles[J]. Acta Geotechnica, 2016, 11(4): 739-761.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(8)

    Article Metrics

    Article views (58) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return