Volume 37 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Wang Kuangshan, Pang Long, Dai Zhenxin, Zhang Hui, Zhang Xinjun. Study on Environmental Durability of Solidified Lake-bottom Sediment[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(4): 455-460. doi: 10.3969/j.issn.1007-2993.2023.04.014
Citation: Wang Kuangshan, Pang Long, Dai Zhenxin, Zhang Hui, Zhang Xinjun. Study on Environmental Durability of Solidified Lake-bottom Sediment[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(4): 455-460. doi: 10.3969/j.issn.1007-2993.2023.04.014

Study on Environmental Durability of Solidified Lake-bottom Sediment

doi: 10.3969/j.issn.1007-2993.2023.04.014
  • Received Date: 2022-05-23
  • Accepted Date: 2022-12-09
  • Rev Recd Date: 2022-08-14
  • Publish Date: 2023-08-08
  • In order to evaluate the environmental durability of solidified lake-bottom sediment, alkali activated cementing material of slag system (slag powder, metakaolin, lime and sodium silicate) and traditional cement were used as curing agent. Through unconfined compression, freezing-thawing cycle, Na2SO4 and NaCl erosion leaching, scanning electron microscopy and EDS-Mappingtests, the typical hydrates, strength evolution, mass loss rate and microstructure characteristics of solidified sediment in erosion environment were analyzed. The results show that a large amount of hydrated sodium silicate aluminate gel(N-A-S-H)was formed in the alkali-excited solidified sediment. The freezing-thawing cycle and erosion leaching can lead to the deterioration of the strength of solidified sediment. The development of ettringite led to expansion and cracking when the cement-solidified sediment was eroded by sulfate, which resulted in the decrease of strength. The alkali-activated curing agent has better chloride ion resistance than sulfate ion and better comprehensive environmental durability than conventional Portland cement.

     

  • loading
  • [1]
    王文军,袁飞飞,蒋建良,等. 高含水率吹填淤泥固化土强度特性及预测模型[J]. 地下空间与工程学报,2021,17(2):461-467.
    [2]
    张志勇,严 娟. 城市河道淤泥固化技术试验研究[J]. 人民长江,2021,52(12):210-213.
    [3]
    周瑞荣,刘 磊,刘 辉,等. 厂拌淤泥固化土的研究及工程应用[J]. 中国港湾建设,2021,41(12):50-54.
    [4]
    黄英豪,戴济群,徐 锴. 新拌固化淤泥的流动性和黏滞性试验研究[J]. 岩土工程学报,2022,44(2):235-244.
    [5]
    易耀林,李 晨,孙 川,等. 碱激发矿粉固化连云港软土试验研究[J]. 岩石力学与工程学报,2013,32(9):1820-1826. doi: 10.3969/j.issn.1000-6915.2013.09.013
    [6]
    孙秀丽,童 琦,刘文化,等. 碱激发粉煤灰和矿粉改性疏浚淤泥力学特性及显微结构研究[J]. 大连理工大学学报,2017,57(6):622-628.
    [7]
    周恒宇,王修山,胡星星,等. 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学,2021,42(8):2089-2098.
    [8]
    吴 俊,征西遥,杨爱武,等. 矿渣–粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学,2021,42(3):647-655.
    [9]
    陈 锐,郝若愚,李 笛,等. 碱激发材料固化低液限粉黏土路用性能及抗冻融特性研究[J]. 工程地质学报,2022,30(2):327-337.
    [10]
    王东星,肖 杰,李丽华,等. 基于碳化–固化技术的武汉东湖淤泥耐久性演变微观机制[J]. 岩土力学,2019,40(8):3045-3053.
    [11]
    谈云志,柯 睿,陈君廉,等. 偏高岭土–石灰增强水泥固化淤泥的耐久性研究[J]. 岩土力学,2020,41(4):1-8.
    [12]
    王臻华,项 伟,吴雪婷,等. 复合固化剂固化淤泥的耐久性和稳定性研究[J]. 安全与环境工程,2019,26(4):74-86. doi: 10.13578/j.cnki.issn.1671-1556.2019.04.012
    [13]
    WANG S,LANG L,WEI M L,et al. Strength and microstructural characteristics of cement-solidified salt-rich dredged silt modified by nanoparticles[J]. Marine Georesources & Geotechnology,2021,40(8):1-12.
    [14]
    周建伟,余保英,孔亚宁,等. 氧化镁质和硫铝酸钙膨胀剂对工程水泥基复合材料性能的影响[J]. 硅酸盐通报,2022,41(1):33-40. doi: 10.3969/j.issn.1001-1625.2022.1.gsytb202201006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (109) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return