Volume 37 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Zhang Nan, Wu Yue, Liu Yongchao, Zhang Zongjun, Han Yutao, Lu Hongyu. Research on Pile Settlement Caused by Large-area Disorderly Soil Stacking[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(5): 538-544. doi: 10.3969/j.issn.1007-2993.2023.05.005
Citation: Zhang Nan, Wu Yue, Liu Yongchao, Zhang Zongjun, Han Yutao, Lu Hongyu. Research on Pile Settlement Caused by Large-area Disorderly Soil Stacking[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(5): 538-544. doi: 10.3969/j.issn.1007-2993.2023.05.005

Research on Pile Settlement Caused by Large-area Disorderly Soil Stacking

doi: 10.3969/j.issn.1007-2993.2023.05.005
  • Received Date: 2022-05-24
  • Accepted Date: 2022-12-09
  • Rev Recd Date: 2022-08-06
  • Available Online: 2023-10-16
  • Publish Date: 2023-10-16
  • A large-scale construction project needs to mound soil over a large area on the constructed foundation pile due to the change of excavation conditions. Large-area mounded soil will cause the settlement of group foundation piles. After the excavation of foundation trench, the settlement of foundation piles is discrete, and the maximum settlement of foundation piles is as high as 670 mm, the maximum extreme value of settlement between foundation piles in single buildings is as high as 510 mm, which far exceeds the standard calculation value, thus the settlement attribution is controversial. Using the finite element software PLAXIS3D, a three-dimensional numerical model was set up and comprehensive analysis of pile settlement was carried out. The results show that large area soil mounded above the completed pile foundation can cause large settlement of the foundation pile. Maximum settlement of ground surface and pile top are located at the center of the mounded soil, negative friction of two piles with maximum and minimum settlement is doubled; According to regional analysis, the overall settlement trend of pile caused by large area disorderly mounded soil conforms to the settlement law in soft soil area; The main factors of large dispersion of each foundation pile include: the height, area and time of the mounded soil, drainage conditions, soil layer conditions of pile crossing, soil layer conditions of underlying layer at pile end, etc. This research has accumulated experience for similar projects.

     

  • loading
  • [1]
    DE BEERE. The effects of horizontal loads on piles, due to surcharge or seismic effects[C]//ICSMFE. The Ninth Conference on Soil Mechanics and Foundation International Engineering. London: IC-SMFE, 1977.
    [2]
    赵伟封,文军强,冯 凯,等. 带状堆载对邻近桩基作用效应的计算方法[J]. 长安大学学报(自然科学版),2019,39(2):100-107,116.
    [3]
    宋修广,李 信,万立尧,等. 堆载作用下被动桩的水平受力及位移分析[J]. 建筑科学与工程学报,2018,35(2):56-62.
    [4]
    陈柯星. 软土场地堆载对邻近桩基影响的试验及数值研究[D]. 杭州: 浙江大学, 2015.
    [5]
    竺明星,龚维明,徐国平,等. 大面积堆载作用下轴向受力隔离桩的承载机制分析[J]. 岩石力学与工程学报,2014,33(2):421-432.
    [6]
    孔纲强,杨 庆,杨 钢,等. 负摩阻力引起的桩身下拽力和桩顶下拽位移研究进展[J]. 河海大学学报(自然科学版),2010,38(4):411-417.
    [7]
    孙军杰,王兰民. 桩基负摩阻力研究中几个基本理论问题的探讨[J]. 岩石力学与工程学报,2006,(1):211-216.
    [8]
    杨 敏,朱碧堂,陈福全. 堆载引起某厂房坍塌事故的初步分析[J]. 岩土工程学报,2002,(4):446-450.
    [9]
    陆明生. 桩基表面负摩擦力的试验研究及经验公式[J]. 水运工程,1997,(5):54-58.
    [10]
    解家毕,刘祖德,刘小文. 大面积堆载情况下桩基础的力学特性分析[J]. 武汉大学学报(工学版),2004,(3):57-60,65.
    [11]
    MUTHUKKUMARAN K,KRISHNAN M G. Three-dimensional analysis of piles on sloping ground subjected to passive load induced by surcharge[J]. Inter-national Journal of Engineering and Technology Inno-vation,2012,2(1):31-47.
    [12]
    KARIM M R. Behaviour of piles subjected to passive subsoil movement due to embankment construction-a simplified 3D analysis[J]. Computers and Geotechnics,2013,53:1-8. doi: 10.1016/j.compgeo.2013.04.004
    [13]
    吴回国,吴跃东,梁传扬,等. 大面积堆载对桩基负摩阻力的影响[J]. 中国水运(下半月),2021,21(2):154-156.
    [14]
    张 蔚. 堆载作用下软土地基中的被动桩效应研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [15]
    赵彤雯. 软土地区大面积堆载对场地以及临近桩基础的影响[D]. 西安: 西安理工大学, 2018.
    [16]
    曹文昭,杨志银,蔡巧灵,等. 软土地基超长桩静载试验中桩侧堆载影响分析[J]. 建筑科学与工程学报,2021,38(6):1-10.
    [17]
    刘自由. 土体堆载情况下的群桩效应分析[J]. 中南大学学报(自然科学版),2013,44(11):4707-4711.
    [18]
    ASHOUR M,HELAL A. Contribution of vertical skin friction to the lateral resistance of large-diameter shafts[J]. Journal of Bridge Engineering,2014,19(2):289-302. doi: 10.1061/(ASCE)BE.1943-5592.0000505
    [19]
    黄 挺,龚维明,戴国亮,等. 桩基负摩阻力时间效应试验研究[J]. 岩土力学,2013,34(10):2841-2846.
    [20]
    DB\T 29—20—2017 天津市岩土工程技术规范[S].
    [21]
    VERMEER P A. Small-strain stiffness of soils and its numerical consequences[M]. Stuttgart: Thomas Benz, 2007.
    [22]
    顾晓强,吴瑞拓,梁发云,等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学,2021,42(3):833-845. doi: 10.16285/j.rsm.2020.0741
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (94) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return