Volume 38 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
Jiang Kaisong, Qi Chengzhi, Lu Chunsheng, Wang Zefan, Zhang Yujia. Elastic-plastic Constitutive Model Considering Structural Effects of Deep-sea Energy Soil[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(3): 263-272. doi: 10.3969/j.issn.1007-2993.2024.03.002
Citation: Jiang Kaisong, Qi Chengzhi, Lu Chunsheng, Wang Zefan, Zhang Yujia. Elastic-plastic Constitutive Model Considering Structural Effects of Deep-sea Energy Soil[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(3): 263-272. doi: 10.3969/j.issn.1007-2993.2024.03.002

Elastic-plastic Constitutive Model Considering Structural Effects of Deep-sea Energy Soil

doi: 10.3969/j.issn.1007-2993.2024.03.002
  • Received Date: 2023-08-17
  • Accepted Date: 2024-03-08
  • Rev Recd Date: 2024-03-07
  • Publish Date: 2024-06-12
  • Deep-sea energy soil refers to deep-sea sediments where gas hydrates are filled in various modes within the pores. The filling effect of gas hydrates significantly impacts the density and porosity ratio of deep-sea energy soil. Additionally, the cementation effect of gas hydrates generates increasing bonding force with increasing saturation, jointly affecting the complex mechanical properties of deep-sea energy soil. Furthermore, deep-sea energy soil is a distinctive structural soil, wherein the particle framework, pore characteristics, and arrangement influence its strength, strain softening, and characteristics such as shear dilation and contraction. Within the framework of the CSUH model, this research reflected the compressibility characteristics of gas hydrates on energy soil by establishing pressure-hardening parameters related to gas hydrate saturation. Furthermore, considering the influence of gas hydrate filling effects, the actual initial porosity calculation formula for energy soil was derived and incorporated into the state parameters to reflect its shear dilation characteristics. Finally, utilizing structural parameters describing soil damage effects and cementation parameters related to gas hydrate saturation as hardening rules, an elastoplastic constitutive model for structural deep-sea energy soil considering gas hydrate filling effects was established. Comparative analysis with indoor experimental results validates the model's efficacy in effectively reflecting the complex mechanical properties of energy soil under various gas hydrate saturations and confining pressure conditions, including strain hardening and softening, as well as volume shear dilation and contraction.

     

  • loading
  • [1]
    KONG L, ZHANG Z, YUAN Q, et al. Multi-factor sensitivity analysis on the stability of submarine hydrate-bearing slope[J]. China Geology,2018,1(3):367-373. doi: 10.31035/cg2018051
    [2]
    刘锐明, 袁庆盟, 孔 亮, 等. 基于统一硬化参数的深海能源土本构模型[J]. 工程地质报,2019,27(4):811-818.
    [3]
    颜荣涛, 张炳晖, 杨德欢, 等. 不同温–压条件下含水合物沉积物的损伤本构关系[J]. 岩土力学,2018,39(12):4421-4428.
    [4]
    WINTERS W J, PECHER I A, WAITE W F, et al. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane hydrate[J]. American Mineralogist, 2004, 89(8): 1221-1227.
    [5]
    MASUI A, HANEDA H, OGATA Y. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//International Offshore and Polar Engineering Conference.2005.
    [6]
    REES E V L , CLAYTON C R I , PRIEST J A . The effects of hydrate cement on the stiffness of some sands[J]. Géotechnique, 2010, 60(6): 435-445.
    [7]
    颜荣涛, 韦昌富, 傅鑫晖, 等. 水合物赋存模式对含水合物土力学特性的影响[J]. 岩石力学与工程学报,2013,32(S2):4115-4122.
    [8]
    YUN T S, SANTAMARINA J C, RUPPEL C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate[J]. Journal of Geophysical Research: Solid Earth, 2007, 112 (B4):116.
    [9]
    吴 杨, 崔 杰, 廖静容, 等. 不同细颗粒含量甲烷水合物沉积物三轴剪切试验研究[J]. 岩土工程学报, 2021, 43(1):156-164.
    [10]
    SULTAN N, GARZIGHLIA S. Geomechanical constitutive modeling of gas hydrate bearing sediments[C]//Proceedings of the 7th International Conference on Gas Hydrates (IGGH 2011). Edinbergh: [s. n. ], 2011.
    [11]
    UCHIDA S , SOGA K , YAMAMOTO K . Critical state soil constitutive model for methane hydrate soil[J]. Journal of Geophysical Research Solid Earth, 2012, 117(B3):1-13.
    [12]
    杨期君, 赵春风. 含气水合物沉积物弹塑性损伤本构模型探讨[J]. 岩土力学,2014,35(4):991-997.
    [13]
    吴二林, 韦昌富, 魏厚振, 等. 含天然气水合物沉积物损伤统计本构模型[J]. 岩土力学,2013,34(1):60-65.
    [14]
    周鸣亮, 贺 洁. 层状赋存含水合物沉积物的本构模型研究[J]. 工程地质学报,2022,30(5):1427-1437.
    [15]
    蒋明镜, 肖 俞, 朱方园. 深海能源土微观力学胶结模型及参数研究[J]. 岩土工程学报,2012,34(9):1574-1583.
    [16]
    袁思敏, 王路君, 朱 斌, 等. 考虑固相分解的含水合物沉积物体积应变分析模型[J]. 岩土工程学报,2022,44(6):1044-1052.
    [17]
    颜荣涛, 梁维云, 韦昌富, 等. 考虑赋存模式影响的含水合物沉积物的本构模型研究[J]. 岩土力学,2017,38(1):10-18.
    [18]
    DAI J, BANIK N, GILLESPIE D, et al. Exploration for gas hydrates in the deepwater, northern Gulf of Mexico: Part II. Model validation by drilling[J]. Marine & Petroleum Geology, 2008, 25(9): 845-859.
    [19]
    李栋梁, 王 哲, 吴 起, 等. 天然气水合物储层力学特性研究进展[J]. 新能源进展,2019,7(1):40-49.
    [20]
    MASUI A, HANEDA H, OGATA Y, et al. The effect of saturation degree of methane hydrate on the shear strength of synthetic methane hydrate sediments[C]//Proceedings of the 5th International Conference on Gas Hydrates. Trondheim: Tapir Academic Press: 2005.
    [21]
    JIANG M J, ZHU F Y, LIU F, et al. A bond contact model for methane hydrate-bearing sediments with interparticle cementation[J]. International Journal for Numerical & Analytical Methods in Geomechanics,2015,38(17):1823-1854.
    [22]
    刘 林. 粘土和粒状土统一的UH模型[D]. 北京: 北京航空航天大学, 2018.
    [23]
    YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics,2019,110:326-343. doi: 10.1016/j.compgeo.2019.02.024
    [24]
    MIYAZAKI K, SAKAMOTO Y, KAKUMOTO M , et al. Triaxial Compressive Properties of Artificial Methane-Hydrate-Bearing Sediments Containing Fine Fraction[J]. Journal of MMIJ, 2011, 127:565-576.
    [25]
    刘锐明. 基于统一硬化参数的深海能源土本构模型及其ABAQUS二次开发[D]. 青岛: 青岛理工大学, 2019.
    [26]
    刘 林, 姚仰平, 张旭辉, 等. 含水合物沉积物的弹塑性本构模型[J]. 力学学报,2020,52(2):556-566. doi: 10.6052/0459-1879-19-184
    [27]
    刘 芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报,2013,35(8):1565-1572.
    [28]
    刘帅帅, 柳艳华, 李丹梅. 土结构性本构模型研究综述[J]. 河南城建学院学报, 2017, 26(6): 1-6.
    [29]
    蒋明镜, 周 卫, 刘静德, 等. 基于微观力学机制的各向异性结构性砂土的本构模型研究[J]. 岩土力学,2016,37(12):3347-3355.
    [30]
    蒋明镜, 刘 俊, 周 卫, 等. 一个深海能源土弹塑性本构模型[J]. 岩土力学,2018,39(4):1153-1158 .
    [31]
    赵亚鹏, 刘乐乐, 孔 亮, 等. 黏质及砂质能源土统一的弹塑性本构模型[J]. 岩石力学与工程学报,2022,41(12):2579-2591.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (82) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return