留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂地下通道施工对地铁隧道影响全过程分析

于峰泉 吴伟 安然 成怡冲

于峰泉, 吴伟, 安然, 成怡冲. 复杂地下通道施工对地铁隧道影响全过程分析[J]. 岩土工程技术, 2025, 39(1): 42-48. doi: 10.20265/j.cnki.issn.1007-2993.2023-0699
引用本文: 于峰泉, 吴伟, 安然, 成怡冲. 复杂地下通道施工对地铁隧道影响全过程分析[J]. 岩土工程技术, 2025, 39(1): 42-48. doi: 10.20265/j.cnki.issn.1007-2993.2023-0699
Yu Fengquan, Wu Wei, An Ran, Cheng Yichong. Whole process analysis of the impact of complex underground passage construction on subway tunnel[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(1): 42-48. doi: 10.20265/j.cnki.issn.1007-2993.2023-0699
Citation: Yu Fengquan, Wu Wei, An Ran, Cheng Yichong. Whole process analysis of the impact of complex underground passage construction on subway tunnel[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(1): 42-48. doi: 10.20265/j.cnki.issn.1007-2993.2023-0699

复杂地下通道施工对地铁隧道影响全过程分析

doi: 10.20265/j.cnki.issn.1007-2993.2023-0699
详细信息
    作者简介:

    于峰泉,男,1980年生,大学本科,高级工程师,主要从事轨道交通方面的设计与研究。E-mail: 374875404@qq.com

    通讯作者:

    安 然,女,1988年生,硕士,高级工程师,主要从事岩土工程方面的设计与研究。E-mail: 564455134@qq.com

  • 中图分类号: U456;TU470

Whole process analysis of the impact of complex underground passage construction on subway tunnel

  • 摘要: 基于宁波某紧邻隧道的地下通道基坑及顶管工程,结合监测数据,分析施工全过程对地铁隧道影响。监测数据表明,全圆MJS工法、水泥搅拌桩和高压旋喷桩施工对隧道产生较大影响,引起隧道产生较大隆起、远离施工方向的水平位移和缩径;未限时浇筑底板、两道支撑连续拆除、顶板较长时间未完全封闭,均导致隧道水平位移和收敛较大增长。顶管施工期间,平行隧道和下卧隧道变形包括初始沉降、隆起增加和后期下沉阶段。紧邻地铁的复杂地下工程,需重视全过程变形控制,以实现隧道变形控制目标。

     

  • 图  1  本工程总平面图

    图  2  1号出入口与轨道交通结构剖面关系图(单位:mm)

    图  3  1号出入口南侧下行线隧道位移累计分布曲线(竖向围护加固施工阶段)

    图  4  下行线隧道位移分布曲线(竖向围护加固施工阶段)

    图  5  1号出入口南侧下行线隧道位移累计分布曲线(开挖阶段)

    图  6  15—19号监测点下行线竖向位移随时间变化曲线

    图  7  6—8号监测点下行线竖向位移随时间变化曲线

    图  8  基坑、顶管和轨道交通结构放大图

    图  9  隧道位移反分析结果

    表  1  土体主要物理力学参数

    土层名称层厚
    /m
    Es
    /MPa
    γ
    /(kN·m−3)
    c
    /kPa
    φ
    /(°)
    含水率
    /%
    1黏土0.6~1.44.0218.423.511.335.7
    1淤泥质黏土0.6~3.22.0617.012.07.851.0
    2黏土0.7~1.23.4418.021.411.240.7
    3淤泥7.2~8.42.0316.812.67.953.1
    4淤泥质粉质黏土1.1~3.42.7018.113.410.237.5
    ③粉质黏土1.7~3.73.6418.714.511.132.9
    ④淤泥质黏土1.1~4.62.0717.614.99.144.3
    ⑤粉质黏土8.7~16.15.6119.033.017.031.0
    下载: 导出CSV
  • [1] 陈仁朋, 叶跃鸿, 王诚杰, 等. 大型地下通道开挖对下卧地铁隧道上浮影响[J]. 浙江大学学报(工学版),2017,51(7):1269-1277. (CHEN R P, YE Y H, WANG C J, et al. Influence of open-cut tunneling on uplift behavior of underlying metro tunnel[J]. Journal of Zhejiang University (Engineering Science),2017,51(7):1269-1277. (in Chinese) doi: 10.3785/j.issn.1008-973X.2017.07.001

    CHEN R P, YE Y H, WANG C J, et al. Influence of open-cut tunneling on uplift behavior of underlying metro tunnel[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(7): 1269-1277. (in Chinese) doi: 10.3785/j.issn.1008-973X.2017.07.001
    [2] 王贺敏, 肖尊群, 汤东桑, 等. 郑州地铁4号线商都路站1号地下通道矩形顶管施工过程数值模拟与现场监测[J]. 隧道建设(中英文),2019,39(S2):110-119. (WANG H M, XIAO Z Q, TANG D S, et al. Numerical simulation and field monitoring of construction process of rectangular pipe jacking in No. 1 underground passage of Shangdu Road Station on Zhengzhou Metro Line 4[J]. Tunnel Construction,2019,39(S2):110-119. (in Chinese)

    WANG H M, XIAO Z Q, TANG D S, et al. Numerical simulation and field monitoring of construction process of rectangular pipe jacking in No. 1 underground passage of Shangdu Road Station on Zhengzhou Metro Line 4[J]. Tunnel Construction, 2019, 39(S2): 110-119. (in Chinese)
    [3] 叶俊能, 曹信江, 成怡冲, 等. 钻孔灌注桩施工引起的邻近深层土体位移分析[J]. 现代隧道技术,2019,56(S2):332-339. (YE J N, CAO X J, CHENG Y C, et al. Analysis of soil displacement adjacent to cast-in-place bored piles under construction[J]. Modern Tunnelling Technology,2019,56(S2):332-339. (in Chinese)

    YE J N, CAO X J, CHENG Y C, et al. Analysis of soil displacement adjacent to cast-in-place bored piles under construction[J]. Modern Tunnelling Technology, 2019, 56(S2): 332-339. (in Chinese)
    [4] 成怡冲, 龚迪快, 汤继新, 等. 地连墙施工环境效应与预测方法研究[J]. 建筑结构,2020,50(17):138-143. (CHENG Y C, GONG D K, TANG J X, et al. Research on environmental effects of diaphragm wall construction and prediction methods[J]. Building Structure,2020,50(17):138-143. (in Chinese)

    CHENG Y C, GONG D K, TANG J X, et al. Research on environmental effects of diaphragm wall construction and prediction methods[J]. Building Structure, 2020, 50(17): 138-143. (in Chinese)
    [5] 刘建国, 李 恒, 童立元, 等. 紧邻地铁隧道的搅拌桩加固施工控制技术试验研究[J]. 城市轨道交通研究,2019,22(11):41-46. (LIU J G, LI H, TONG L Y, et al. Experiment of mixed pile reinforcement construction control technology adjacent to metro tunnel[J]. Urban Mass Transit,2019,22(11):41-46. (in Chinese)

    LIU J G, LI H, TONG L Y, et al. Experiment of mixed pile reinforcement construction control technology adjacent to metro tunnel[J]. Urban Mass Transit, 2019, 22(11): 41-46. (in Chinese)
    [6] 赵香山, 李春涛, 王建华. 软土中MJS工法桩施工环境效应的数值分析[J]. 地下空间与工程学报,2016,12(5):1315-1319. (ZHAO X S, LI C T, WANG J H. Numerical analysis on the installation effect of MJS pile in soft clay[J]. Chinese Journal of Underground Space and Engineering,2016,12(5):1315-1319. (in Chinese)

    ZHAO X S, LI C T, WANG J H. Numerical analysis on the installation effect of MJS pile in soft clay[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(5): 1315-1319. (in Chinese)
    [7] 姜叶翔, 李 瑛, 顾 翀. 不同地基加固工艺对周边环境变形影响分析[J]. 地基处理,2020,2(4):335-339. (JIANG Y X, LI Y, GU C. Analysis of soil disturbance for different ground improvement methods[J]. Chinese Journal of Ground Improvement,2020,2(4):335-339. (in Chinese)

    JIANG Y X, LI Y, GU C. Analysis of soil disturbance for different ground improvement methods[J]. Chinese Journal of Ground Improvement, 2020, 2(4): 335-339. (in Chinese)
    [8] 叶 琪, 王国权, 杨兰强, 等. 宁波软土地区MJS工法桩施工对临近既有建筑物的影响分析[J]. 隧道建设(中英文),2017,37(11):1379-1386. (YE Q, WANG G Q, YANG L Q, et al. Analysis of influence of MJS (metro jet system) pile construction on adjacent existing buildings in soft soil area in Ningbo[J]. Tunnel Construction,2017,37(11):1379-1386. (in Chinese)

    YE Q, WANG G Q, YANG L Q, et al. Analysis of influence of MJS (metro jet system) pile construction on adjacent existing buildings in soft soil area in Ningbo[J]. Tunnel Construction, 2017, 37(11): 1379-1386. (in Chinese)
    [9] 吴才德, 曾 婕, 成怡冲, 等. 深基坑开挖空间效应对周围土体及邻近隧道的影响研究[J]. 建筑结构,2016,46(2):91-95. (WU C D, ZENG J, CHENG Y C, et al. Influence study of spatial effect of deep foundation pit excavation on around soil and adjacent tunnel[J]. Building Structure,2016,46(2):91-95. (in Chinese)

    WU C D, ZENG J, CHENG Y C, et al. Influence study of spatial effect of deep foundation pit excavation on around soil and adjacent tunnel[J]. Building Structure, 2016, 46(2): 91-95. (in Chinese)
    [10] 王立峰, 庞 晋, 徐云福, 等. 基坑开挖对近邻运营地铁隧道影响规律研究[J]. 岩土力学,2016,37(7):2004-2010. (WANG L F, PANG J, XU Y F, et al. Influence of foundation pit excavation on adjacent metro tunnels[J]. Rock and Soil Mechanics,2016,37(7):2004-2010. (in Chinese)

    WANG L F, PANG J, XU Y F, et al. Influence of foundation pit excavation on adjacent metro tunnels[J]. Rock and Soil Mechanics, 2016, 37(7): 2004-2010. (in Chinese)
    [11] 王 沛, 翟杰群. 软土基坑施工引起邻近既有地铁隧道位移的预测方法[J]. 城市轨道交通研究,2020,23(8):138-142. (WANG P, ZHAI J Q. Prediction method of metro tunnel displacement caused by adjacent foundation pit excavation in soft soil[J]. Urban Mass Transit,2020,23(8):138-142. (in Chinese)

    WANG P, ZHAI J Q. Prediction method of metro tunnel displacement caused by adjacent foundation pit excavation in soft soil[J]. Urban Mass Transit, 2020, 23(8): 138-142. (in Chinese)
    [12] 王 沛, 任 洁, 翟杰群. 上海软土地区基坑侧向隧道位移控制措施研究[J]. 地下空间与工程学报,2022,18(S1):466-471. (WANG P, REN J, ZHAI J Q. Research on the lateral displacement control measures of the tunnels adjacent to foundation pits in Shanghai soft clay area[J]. Chinese Journal of Underground Space and Engineering,2022,18(S1):466-471. (in Chinese)

    WANG P, REN J, ZHAI J Q. Research on the lateral displacement control measures of the tunnels adjacent to foundation pits in Shanghai soft clay area[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(S1): 466-471. (in Chinese)
    [13] 叶耀东. 大断面矩形顶管近距离上穿地铁隧道变形控制探讨[J]. 城市道桥与防洪,2015(7):203-205. (YE Y D. Discussions on deformation control of subway tunnel by large section rectangular pipe jacking crossing in close distance[J]. Urban Roads Bridges & Flood Control,2015(7):203-205. (in Chinese) doi: 10.3969/j.issn.1009-7716.2015.07.062

    YE Y D. Discussions on deformation control of subway tunnel by large section rectangular pipe jacking crossing in close distance[J]. Urban Roads Bridges & Flood Control, 2015(7): 203-205. (in Chinese) doi: 10.3969/j.issn.1009-7716.2015.07.062
    [14] 刘 波, 章定文, 刘松玉, 等. 大断面顶管通道近接穿越下覆既有地铁隧道数值模拟与现场试验[J]. 岩石力学与工程学报,2017,36(11):2850-2860. (LIU B, ZHANG D W, LIU S Y, et al. Numerical simulation and field monitoring on a large cross-section pipe-jacking underpass traversing existing metro tunnels[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(11):2850-2860. (in Chinese)

    LIU B, ZHANG D W, LIU S Y, et al. Numerical simulation and field monitoring on a large cross-section pipe-jacking underpass traversing existing metro tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2850-2860. (in Chinese)
    [15] 申文明, 朱侠达, 王小刚, 等. 新建顶管近距离上跨运营隧道控制技术研究[J]. 地基处理,2020,2(5):419-423. (SHEN W M, ZHU X D, WANG X G, et al. Control technology of newly-built pipe jacking closely over crossing operating tunnel[J]. Chinese Journal of Ground Improvement,2020,2(5):419-423. (in Chinese)

    SHEN W M, ZHU X D, WANG X G, et al. Control technology of newly-built pipe jacking closely over crossing operating tunnel[J]. Chinese Journal of Ground Improvement, 2020, 2(5): 419-423. (in Chinese)
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-15
  • 修回日期:  2023-11-26
  • 录用日期:  2023-12-25
  • 网络出版日期:  2025-02-21
  • 刊出日期:  2025-02-21

目录

    /

    返回文章
    返回