留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速液压夯处理改扩建公路地基加固效果与施工工艺研究

吕斌 房彦宏 宫海霞 刘亚珍 陈健 张宏博 孙兆云

吕斌, 房彦宏, 宫海霞, 刘亚珍, 陈健, 张宏博, 孙兆云. 高速液压夯处理改扩建公路地基加固效果与施工工艺研究[J]. 岩土工程技术, 2025, 39(2): 254-263. doi: 10.20265/j.cnki.issn.1007-2993.2023-0902
引用本文: 吕斌, 房彦宏, 宫海霞, 刘亚珍, 陈健, 张宏博, 孙兆云. 高速液压夯处理改扩建公路地基加固效果与施工工艺研究[J]. 岩土工程技术, 2025, 39(2): 254-263. doi: 10.20265/j.cnki.issn.1007-2993.2023-0902
Lyu Bin, Fang Yanhong, Gong Haixia, Liu Yazhen, Chen Jian, Zhang Hongbo, Sun Zhaoyun. Reinforcement effect and construction process of rapid impact compaction for highway reconstruction and expansion[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(2): 254-263. doi: 10.20265/j.cnki.issn.1007-2993.2023-0902
Citation: Lyu Bin, Fang Yanhong, Gong Haixia, Liu Yazhen, Chen Jian, Zhang Hongbo, Sun Zhaoyun. Reinforcement effect and construction process of rapid impact compaction for highway reconstruction and expansion[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(2): 254-263. doi: 10.20265/j.cnki.issn.1007-2993.2023-0902

高速液压夯处理改扩建公路地基加固效果与施工工艺研究

doi: 10.20265/j.cnki.issn.1007-2993.2023-0902
基金项目: 国家重点研发计划(2022YFB2602102)
详细信息
    作者简介:

    吕 斌,男,1974年生,大学本科,高级工程师,主要从事高速公路养护管理技术工作。E-mail:inside4u@163.com

  • 中图分类号: U416;TU472

Reinforcement effect and construction process of rapid impact compaction for highway reconstruction and expansion

  • 摘要: 针对高速液压夯处理改扩建公路地基的技术不确定性,依托济广高速改扩建工程,通过调整夯击能、夯击次数、夯间距等施工参数,对高速液压夯处理粉土地基的加固效果与施工工艺进行了研究。研究表明:高速液压夯技术可有效提高地基的加固深度及密实度;夯击能和夯击次数是影响加固效果的主要施工参数,夯后土体加固效果随夯击次数与夯击能的增加均呈线性增加趋势;夯后土体侧向位移量随深度呈现抛物线变化趋势,各夯间距工况下土体侧向位移量在3~4 m埋深处达到峰值;高速液压夯处理粉土地基的最佳夯点间距为1.5 m,最大有效加固深度约6 m,最大有效加固半径约1.6 m。综合试验数据与理论分析,建立了高速液压夯处理粉土地基的加固范围计算公式。

     

  • 图  1  试验场区与水塘位置图

    图  2  高速液压夯仪器

    图  3  高速液压夯加固范围现场试验平面布置(单位:m)

    图  4  高速液压夯施工工艺现场试验平面布置

    图  5  高速液压夯试验现场孔隙水压力计布设

    图  6  高速液压夯试验现场测斜管布设

    图  7  110 kJ夯点正下方超静孔隙水压力

    图  8  不同夯击能第40次夯击超静孔隙水压力变化

    图  9  夯击能150 kJ、夯点间距2.1 m工况下土体侧向位移随夯击次数变化曲线

    图  10  150 kJ工况下土体侧向位移随夯点间距变化曲线

    图  11  不同工况点累积夯沉量监测结果

    图  12  不同夯击能加固处理后的地基载荷试验曲线

    图  13  不同夯击能加固前后地基标贯击数随深度变化曲线

    图  14  不同夯击能第40次夯击夯点下土体超静孔压沿深度变化曲线

    图  15  不同夯击能单击有效影响深度判定曲线

    图  16  不同夯击能单击有效加固深度曲线

    图  17  不同夯击能径向有效影响区域(第40次夯击)

    图  18  不同夯击能单击有效加固半径曲线

    表  1  试验点土质力学参数

    土样名称 取土深度/m 含水率$ {w}_{0} $/% 湿密度$ {\rho }_{0} $/(g·cm−3) 孔隙比$ {e}_{0} $ 压缩系数a100-200/MPa−1 压缩模量$ E\mathrm{_s} $/MPa 渗透系数k/(cm·s−1)
    低液限黏土 1.9~2.1 34.2 1.81 1.002 0.616 3.247 3.85×10−7
    低液限黏土 3.1~3.3 41.9 1.78 1.184 0.542 4.025 1.12×10−4
    低液限粉土 3.6~3.8 29.8
    高液限黏土 5.3~5.5 43.2 1.82 1.168 0.513 4.239 1.60×10−6
    高液限黏土 5.6~5.8 31.2 1.91 0.864 0.544 3.427 5.11×10−7
    低液限粉土 7.4~7.6 27.5 1.97 0.765 0.108 16.305 1.93×10−5
    粉土质砂 8.5~8.7 22.7 1.97 0.686
    低液限黏土 10.8~11.0 28.2 1.94 0.796 0.161 11.028 8.87×10−6
    低液限黏土 13.0~13.2 30.5 1.95 0.838
    低液限黏土 14.8~15.0 24.0 2.03 0.652 0.228 7.221 8.56×10−7
    低液限黏土 16.8~17.0 19.6 2.00 0.625
    低液限粉土 19.6~19.8 18.1 2.02 0.575 0.083 18.575 8.47×10−5
    下载: 导出CSV

    表  2  高速液压夯加固范围试验设计

    工况
    (夯击能)
    夯点
    型式
    夯点
    间距/m
    夯点
    布置
    夯击
    次数
    夯击
    遍数
    备注
    70 kJ 点夯 3.2 正方形 40 2 连续夯击30次,
    提锤1次
    110 kJ 点夯 3.2 正方形 40 2
    150 kJ 点夯 3.2 正方形 40 2
    下载: 导出CSV

    表  3  高速液压夯施工工艺试验设计

    试验类型 工况 夯击能量/kJ 布置形式 夯点间距/m 夯击次数 夯击遍数 试验段长度/m
    夯击能工艺试验1-150150正方形,第二遍夯点位于第一遍夯点之间3.260220
    1-110-8011080
    1-110-6011060
    1-707080
    夯间距工艺试验2-150150正方形,第二遍夯点位于第一遍夯点之间1.260220
    2-1501.5
    2-1502.1
    下载: 导出CSV

    表  4  不同深度处累计孔隙水压力值

    测点埋深/m累计孔隙水压力/kPa
    10击20击30击40击
    418.1038.2556.0668.61
    516.0626.2832.4139.41
    69.3416.9321.6124.23
    74.098.4712.2616.06
    下载: 导出CSV
  • [1] 段凌云. 高速液压夯在高速公路改扩建项目中的应用研究[J]. 四川水泥,2019(12):122. (DUAN L Y. Application research of high speed hydraulic tamper in expressway reconstruction and expansion project[J]. Sichuan Cement,2019(12):122. (in Chinese)

    DUAN L Y. Application research of high speed hydraulic tamper in expressway reconstruction and expansion project[J]. Sichuan Cement, 2019(12): 122.
    [2] 贾冬梅. 改扩建高速公路拓宽路基沉降规律分析[J]. 山西交通科技,2023(1):44-46. (JIA D M. Analysis of subsidence law of widened subgrade of reconstructed and expanded expressway[J]. Shanxi Science & Technology of Transportation,2023(1):44-46. (in Chinese)

    JIA D M. Analysis of subsidence law of widened subgrade of reconstructed and expanded expressway[J]. Shanxi Science & Technology of Transportation, 2023(1): 44-46. (in Chinese)
    [3] BO M W, NA Y M, ARULRAJAH A, et al. Densification of granular soil by dynamic compaction[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement,2009,162(3):121-132. doi: 10.1680/grim.2009.162.3.121
    [4] LEONARDS G A, HOLTZ R D, CUTTER W A. Dynamic compaction of granular soils[J]. Journal of the Geotechnical Engineering Division,1980,106(1):35-44. doi: 10.1061/AJGEB6.0000914
    [5] TANG K, YUAN H W, LV J X, et al. Research on the method for analyzing the degree of impact acceleration and compaction of the impact roller[J]. IEEE Access,2020,8:73588-73600. doi: 10.1109/ACCESS.2020.2983425
    [6] 赵建忠. 公路路基施工中冲击碾压技术的应用[J]. 交通建设与管理,2023(3):148-149. (ZHAO J Z. Application of impact crushing technology in highway roadbed construction[J]. Transport Construction & Management,2023(3):148-149. (in Chinese)

    ZHAO J Z. Application of impact crushing technology in highway roadbed construction[J]. Transport Construction & Management, 2023(3): 148-149.
    [7] 腊润涛, 张 荣. 强夯法处理湿陷性黄土地基的效果评价[J]. 公路,2020,65(1):54-57. (LA R T, ZHANG R. Evaluation of the effectiveness of strong ramming method in treating collapsible loess foundations[J]. Highway,2020,65(1):54-57. (in Chinese)

    LA R T, ZHANG R. Evaluation of the effectiveness of strong ramming method in treating collapsible loess foundations[J]. Highway, 2020, 65(1): 54-57.
    [8] 曹 斌, 刘 岩. 高速液压夯实机在高速公路路基填筑中的应用[J]. 公路,2016,61(11):71-75. (CAO B, LIU Y. Application of high-speed hydraulic rammer in highway roadbed filling[J]. Highway,2016,61(11):71-75. (in Chinese)

    CAO B, LIU Y. Application of high-speed hydraulic rammer in highway roadbed filling[J]. Highway, 2016, 61(11): 71-75.
    [9] 张凯乐. 高速夯实机在桥台背路基施工中的应用[J]. 交通世界,2022(27):75-77. (ZHANG K L. Application of high-speed rammer in the construction of bridge abutment backing roadbed[J]. TranspoWorld,2022(27):75-77. (in Chinese)

    ZHANG K L. Application of high-speed rammer in the construction of bridge abutment backing roadbed[J]. TranspoWorld, 2022(27): 75-77.
    [10] 董宝志, 徐文涛, 徐 晓, 等. 14000 kN·m超高能级强夯处理晋南地区湿陷性黄土的效果分析[J]. 地基处理,2023,5(5):414-420. (DONG B Z, XU W T, XU X, et al. Effect of 14000 kN·m ultra-high energy level dynamic compaction on collapsible loess in southern Shanxi[J]. Journal of Ground Improvement,2023,5(5):414-420. (in Chinese)

    DONG B Z, XU W T, XU X, et al. Effect of 14000 kN·m ultra-high energy level dynamic compaction on collapsible loess in southern Shanxi[J]. Journal of Ground Improvement, 2023, 5(5): 414-420. (in Chinese)
    [11] SIMPSON L A, JANG S T, RONAN C E, et al. Liquefaction potential mitigation using rapid impact compaction[M]//ZENG D, MANZARI M T, HILTUNEN D R. Geotechnical Earthquake Engineering and Soil Dynamics IV. Sacramento: ASCE, 2008: 1-10.
    [12] SUHENDRA A, FENDY. Rapid impact compaction method as an alternative ground improvement technology in infrastructure project[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2023: 012012.
    [13] ADAM D, BRANDL H. Innovative dynamic compaction techniques & integrated compaction control methods[C]//Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. IOS Press, 2009: 2216-2219.
    [14] SERRIDGE C J, SYNAC O. Application of the Rapid Impact Compaction (RIC) technique for risk mitigation in problematic soils[C]//The 10th IAEG International Congress. Nottingham, 2006: 1-13.
    [15] ALLOUZI R, BODOUR W A L, ALKLOUB A, et al. Finite-element model to simulate ground-improvement technique of rapid impact compaction[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement,2019,172(1):44-52. doi: 10.1680/jgrim.18.00057
    [16] KRISTIANSEN H, DAVIES M. Ground improvement using rapid impact compaction[C]//13th World Conference on Earthquake Engineering. Vancouver: WCEE, 2004: 496.
    [17] MOHAMMED M M, HASHIM R, SALMAN A F. Effective improvement depth for ground treated with rapid impact compaction[J]. Scientific Research and Essays,2010,5(18):2686-2693.
    [18] TARAWNEH B, MATRAJI M. Ground improvement using rapid impact compaction: case study in Dubai[J]. Građevinar,2014,66(11):1007-1014.
    [19] GHANBARI E, HAMIDI A. Numerical modeling of rapid impact compaction in loose sands[J]. Geomechanics and Engineering,2014,6(5):487-502. doi: 10.12989/gae.2014.6.5.487
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  8
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2024-01-24
  • 录用日期:  2024-03-11
  • 网络出版日期:  2025-04-07
  • 刊出日期:  2025-04-08

目录

    /

    返回文章
    返回