留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于坍落度的砾砂地层盾构渣土改良试验及其预测研究

李辉 佟方硕 李宾 裴柏铮

李辉, 佟方硕, 李宾, 裴柏铮. 基于坍落度的砾砂地层盾构渣土改良试验及其预测研究[J]. 岩土工程技术, 2025, 39(2): 290-296. doi: 10.20265/j.cnki.issn.1007-2993.2024-0013
引用本文: 李辉, 佟方硕, 李宾, 裴柏铮. 基于坍落度的砾砂地层盾构渣土改良试验及其预测研究[J]. 岩土工程技术, 2025, 39(2): 290-296. doi: 10.20265/j.cnki.issn.1007-2993.2024-0013
Li Hui, Tong Fangshuo, Li Bin, Pei Bozheng. Slump-based soil conditioning of EPB shield in gravelly sand and its prediction study[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(2): 290-296. doi: 10.20265/j.cnki.issn.1007-2993.2024-0013
Citation: Li Hui, Tong Fangshuo, Li Bin, Pei Bozheng. Slump-based soil conditioning of EPB shield in gravelly sand and its prediction study[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(2): 290-296. doi: 10.20265/j.cnki.issn.1007-2993.2024-0013

基于坍落度的砾砂地层盾构渣土改良试验及其预测研究

doi: 10.20265/j.cnki.issn.1007-2993.2024-0013
详细信息
    作者简介:

    李 辉,女,1981年生,学士,高级工程师,从事城市轨道交通施工技术研究。E-mail:447608207@qq.com

  • 中图分类号: U455

Slump-based soil conditioning of EPB shield in gravelly sand and its prediction study

  • 摘要: 在砾砂地层中掘进时,渣土改良效果是影响盾构掘进效率的关键因素。通过坍落度试验研究了泡沫、膨润土泥浆和高分子聚合物对改良土体流塑性的影响。以试验结果作为数据样本集,采用SVR,KNR,RFR和BPNN等常用机器学习方法构建了土体坍落度的预测模型,并将预测值与实际值进行了对比分析。研究结果表明:(1)泡沫对砾砂渣土流塑性的改良效果较好;(2)对于高含水率的砾砂地层,应使用高黏度的膨润土泥浆或PAM溶液进行改良,以起到保水增黏、防止喷涌的目的;(3)对比SVR,KNR和BPNN模型,RFR模型在预测时的性能表现最佳,能够更准确地预测改良渣土的坍落度,并且对模型进行了可解释性分析。

     

  • 图  1  原状土颗粒级配曲线

    图  2  泡沫注入比对坍落度的影响

    图  3  不同土水质量比下膨润土注入比与坍落度的关系

    图  4  不同含水率下膨润土注入比与坍落度的关系

    图  5  不同浓度下高分子注入比与坍落度的关系

    图  6  不同含水率下高分子注入比与坍落度的关系

    图  7  坍落度与预测参数间的相关系数矩阵热力图

    图  8  四种模型真实值与预测值对比

    图  9  四种模型的测试集评价指标雷达图

    图  10  四种模型的训练集评价指标雷达图

    图  11  SHAP特征重要度图

    图  12  SHAP值

    表  1  砾砂地层颗粒组成指标

    有效粒径d10/mm平均粒径d50/mm限制粒径d60/mm不均匀系数Cu曲率系数
    Cc
    0.373.427.3719.920.27
    下载: 导出CSV

    表  2  四种模型的测试集评价指标及排名

    测试集 R2 排名 MSE
    /mm2
    排名 RMSE
    /mm
    排名 MAE
    /mm
    排名 汇总
    SVR 0.75554 2 597.75 2 24.449 2 15.226 2 8
    KNR 0.75402 3 601.45 3 24.524 3 18.041 3 12
    RFR 0.90255 1 287.22 1 16.947 1 12.300 1 4
    BPNN 0.68028 4 781.76 4 27.960 4 20.833 4 16
    下载: 导出CSV

    表  3  四种模型的训练集评价指标及排名

    训练集 R2 排名 MSE
    /mm2
    排名 RMSE
    /mm
    排名 MAE
    /mm
    排名 汇总
    SVR 0.89994 2 294.92 2 17.173 2 14.192 2 8
    KNR 0.78865 4 622.95 4 24.959 4 119.665 4 16
    RFR 0.92914 1 50.991 1 7.1408 1 4.8726 1 4
    BPNN 0.79995 3 589.64 3 24.282 3 18.257 3 12
    下载: 导出CSV
  • [1] 胡长明, 张延杰, 谭 博, 等. 富水砂卵石地层土压平衡盾构隧道碴土改良试验研究[J]. 现代隧道技术,2017,54(6):45-55. (HU C M, ZHANG Y J, TAN B, et al. Soil conditioning experiments for EPB shield tunneling in water-rich sandy cobble strata[J]. Modern Tunnelling Technology,2017,54(6):45-55. (in Chinese)

    HU C M, ZHANG Y J, TAN B, et al. Soil conditioning experiments for EPB shield tunneling in water-rich sandy cobble strata[J]. Modern Tunnelling Technology, 2017, 54(6): 45-55. (in Chinese)
    [2] 茅 华. 隧道施工盾构螺旋机喷涌应对措施[J]. 铁道建筑,2014(10):39-41. (MAO H. Countermeasures to stop muck-gushing from shield’s screw conveyer during tunnel construction[J]. Railway Engineering,2014(10):39-41. (in Chinese) doi: 10.3969/j.issn.1003-1995.2014.10.10

    MAO H. Countermeasures to stop muck-gushing from shield’s screw conveyer during tunnel construction[J]. Railway Engineering, 2014(10): 39-41. (in Chinese) doi: 10.3969/j.issn.1003-1995.2014.10.10
    [3] 王洪新. 土压平衡盾构刀盘扭矩计算及其与盾构施工参数关系研究[J]. 土木工程学报,2009,42(9):109-113. (WANG H X. Calculation of cutterhead torque for EPB shield and the relationship between cutterhead torque and shield driving parameters[J]. China Civil Engineering Journal,2009,42(9):109-113. (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.09.016

    WANG H X. Calculation of cutterhead torque for EPB shield and the relationship between cutterhead torque and shield driving parameters[J]. China Civil Engineering Journal, 2009, 42(9): 109-113. (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.09.016
    [4] 肖 超, 阳军生, 王树英, 等. 土压平衡盾构改良渣土力学行为及其地层响应特征[J]. 中南大学学报(自然科学版),2016,47(7):2432-2440. (XIAO C, YANG J S, WANG S Y, et al. Conditioned soils mechanical behavior of earth pressure balance shield tunneling and its impact on formation response[J]. Journal of Central South University (Science and Technology),2016,47(7):2432-2440. (in Chinese)

    XIAO C, YANG J S, WANG S Y, et al. Conditioned soils mechanical behavior of earth pressure balance shield tunneling and its impact on formation response[J]. Journal of Central South University (Science and Technology), 2016, 47(7): 2432-2440. (in Chinese)
    [5] MARTINELLI D, PEILA D, CAMPA E. Feasibility study of tar sands conditioning for earth pressure balance tunnelling[J]. Journal of Rock Mechanics and Geotechnical Engineering,2015,7(6):684-690. doi: 10.1016/j.jrmge.2015.09.002
    [6] BORIO L, PEILA D. Study of the permeability of foam conditioned soils with laboratory tests[J]. American Journal of Environmental Sciences,2010,6(4):365-370. doi: 10.3844/ajessp.2010.365.370
    [7] 魏康林. 土压平衡盾构施工中泡沫和膨润土改良土体的微观机理分析[J]. 现代隧道技术,2007,44(1):73-77. (WEI K L. Micro-mechanism analysis for the soil improvement by foam and bentonite in EPB shield tunneling[J]. Modern Tunnelling Technology,2007,44(1):73-77. (in Chinese) doi: 10.3969/j.issn.1009-6582.2007.01.016

    WEI K L. Micro-mechanism analysis for the soil improvement by foam and bentonite in EPB shield tunneling[J]. Modern Tunnelling Technology, 2007, 44(1): 73-77. (in Chinese) doi: 10.3969/j.issn.1009-6582.2007.01.016
    [8] 汪国锋. 北京砂卵石地层土压平衡盾构土体改良技术试验研究[D]. 北京: 中国地质大学(北京), 2011. (WANG G F. Tset research on soil improvement technology for EPBS in Beijing sandy pebble stratum[D]. Beijing: China University of Geosciences (Beijing), 2011. (in Chinese)

    WANG G F. Tset research on soil improvement technology for EPBS in Beijing sandy pebble stratum[D]. Beijing: China University of Geosciences (Beijing), 2011. (in Chinese)
    [9] 徐琳琳, 余 金, 蒋亚龙, 等. 泡沫性能测试及其在富水砂层渣土改良中应用[J]. 地下空间与工程学报,2021,17(S1):345-353. (XU L L, YU J, JIANG Y L, et al. Testing of foam properties and its application in soil conditioning for water bearing sandy grounds[J]. Chinese Journal of Underground Space and Engineering,2021,17(S1):345-353. (in Chinese)

    XU L L, YU J, JIANG Y L, et al. Testing of foam properties and its application in soil conditioning for water bearing sandy grounds[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S1): 345-353. (in Chinese)
    [10] 乔国刚, 陶龙光, 刘 波, 等. 泡沫改良富水砂层工程性质的实验研究[J]. 现代隧道技术,2009,46(6):79-84. (QIAO G G, TAO L G, LIU B, et al. Study on engineering properties of foam-conditioned water-soaked sand strata[J]. Modern Tunnelling Technology,2009,46(6):79-84. (in Chinese) doi: 10.3969/j.issn.1009-6582.2009.06.013

    QIAO G G, TAO L G, LIU B, et al. Study on engineering properties of foam-conditioned water-soaked sand strata[J]. Modern Tunnelling Technology, 2009, 46(6): 79-84. (in Chinese) doi: 10.3969/j.issn.1009-6582.2009.06.013
    [11] 胡长明, 崔 耀, 王雪艳, 等. 土压平衡盾构施工穿越砂层渣土改良试验研究[J]. 西安建筑科技大学学报(自然科学版),2013,45(6):761-766. (HU C M, CUI Y, WANG X Y, et al. Soil improvement for earth pressure balance shields construction in full section sand layer[J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition),2013,45(6):761-766. (in Chinese)

    HU C M, CUI Y, WANG X Y, et al. Soil improvement for earth pressure balance shields construction in full section sand layer[J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition), 2013, 45(6): 761-766. (in Chinese)
    [12] 郭付军, 赵振威, 张 杰, 等. 使用聚合物对纯砂层进行渣土改良的试验研究[J]. 隧道建设,2017,37(S1):53-58. (GUO F J, ZHAO Z W, ZHANG J, et al. Experimental study of ground conditioning of pure sand stratum by using polymer[J]. Tunnel Construction,2017,37(S1):53-58. (in Chinese) doi: 10.3973/j.issn.1672-741X.2017.S1.009

    GUO F J, ZHAO Z W, ZHANG J, et al. Experimental study of ground conditioning of pure sand stratum by using polymer[J]. Tunnel Construction, 2017, 37(S1): 53-58. (in Chinese) doi: 10.3973/j.issn.1672-741X.2017.S1.009
    [13] VAPNIK V, GOLOWICH S E, SMOLA A. Support vector method for function approximation, regression estimation and signal processing[C]//Proceedings of the 10th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 1996: 281-287.
    [14] FIX E, HODGES J L. Discriminatory analysis. Nonparametric discrimination: consistency properties[J]. International Statistical Review/Revue Internationale de Statistique,1989,57(3):238-247.
    [15] BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5-32. doi: 10.1023/A:1010933404324
    [16] ESONYE C, ONUKWULI O D, OFOEFULE A U, et al. Multi-input multi-output (MIMO) ANN and Nelder-Mead’s simplex based modeling of engine performance and combustion emission characteristics of biodiesel-diesel blend in CI diesel engine[J]. Applied Thermal Engineering,2019,151:100-114. doi: 10.1016/j.applthermaleng.2019.01.101
    [17] LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2017: 4768-4777.
    [18] ZHANG A, LIPTON Z C, LI M, et al. Dive into deep learning[M]. Cambridge: Cambridge University Press, 2023.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  6
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-07
  • 修回日期:  2024-03-27
  • 录用日期:  2024-05-09
  • 网络出版日期:  2025-04-07
  • 刊出日期:  2025-04-08

目录

    /

    返回文章
    返回