Influence factors of the maximum impact force on the protective structure under rockfall
-
摘要: 崩塌滚石对防护结构造成的最大冲击力是进行防护结构设计的前提和基础,因而对其进行准确预测具有重要的工程意义。为了探究不同滚石参数及防护结构特征条件下,滚石对防护结构的最大冲击力影响因素,研制了一套滚石冲击力测试装置,通过试验研究了在滚石质量、滚石高度、边坡坡度、防护结构倾角与缓冲层厚度等不同工况下,球形、柱形及不规则形等3种不同形状滚石对防护结构的最大冲击力。试验结果表明:滚石对防护结构的最大冲击力随滚石质量和高度的增加而呈线性增加,随边坡坡度和防护结构倾角的增加而迅速增加,随缓冲层厚度增加而线性减小。试验发现滚石形状和高度对防护结构的最大冲击力会造成较大的离散性,不规则形状滚石对防护结构最大冲击力的离散性主要源于不规则形状滚石造成的滚石运动过程的复杂性和阻拦冲击过程的不确定性,认为滚石冲击姿态及其与防护结构的接触方式对防护结构最大冲击力有着非常重要的影响。研究结果可为滚石灾害的防治及防护结构的设计提供参考。Abstract: The maximum impact force caused by the rockfall on protective structures is the premise and basis for the design of protective structures, so it is of great engineering significance to accurately predict it. Therefore, to explore the influence factors of the maximum impact force caused by the rockfall on the protective structure under different rockfall parameters and protective structure characteristics, a set of rockfall impact test device was designed. The maximum impact of the rockfall of three different shapes, such as spherical, cylindrical and irregular, on the protective structure under different the following conditions, such as rockfall mass, rockfall height, slope gradient, protective structure angle and buffer layer thickness, was studied. The test results show that the maximum impact force of the rockfall on the protective structure increases linearly with the increase of the mass and height of the rockfall, increases rapidly with the increase of the slope gradient and the angle of the protective structure, and decreases linearly with the increase of the buffer thickness. In addition, it is found that the maximum impact of the shape and height of the rockfall on the protective structure will cause greater dispersion, and the maximum impact of the irregular shape of the rockfall on the protective structure is mainly due to the complexity of the rockfall motion process and the uncertainty of the impact blocking process caused by the irregular shape of the rockfall. It is concluded that the impact attitude of the rockfall and its contact mode with the protective structure have a very important influence on the maximum impact force of the protective structure. The research results can provide reference for the prevention and control of rockfall disasters and the design of protective structures.
-
Key words:
- rockfall shape /
- the maximum impact force /
- protective structure
-
表 1 滚石冲击力试验方案
序号 工况 参数取值 基准条件 ① 滚石质量m/kg 1/2/3 滚石质量2 kg,
滑道坡度30°,
滚石高度0.75 m,
防护结构倾角60 °,
缓冲材料为砂土② 滚石高度h/m 0.5/0.75/1 ③ 滑道坡度α/(°) 30/45/60 ④ 防护结构倾角β/(°) 0/30/60 ⑤ 缓冲层厚度t/cm 0/2/4/6 -
[1] 何思明, 王东坡, 吴 永, 等. 崩塌滚石灾害形成演化机理与减灾关键技术[M]. 北京: 科学出版社, 2015: 1-5. (HE S M, WANG D P, WU Y. Formation and evolution mechanism of rockfall disaster and key technology of disaster reduction[M]. Beijing: Science Press, 2015: 1-5. (in Chinese)HE S M, WANG D P, WU Y. Formation and evolution mechanism of rockfall disaster and key technology of disaster reduction[M]. Beijing: Science Press, 2015: 1-5. (in Chinese) [2] 冯 振, 路 璐, 张长敏, 等. 降雨诱发山区公路边坡危岩崩塌机理研究[J]. 防灾减灾学报,2021,37(4):1-8,15. (FENG Z, LU L, ZHANG C M, et al. Mechanism of rock collapse due to rainfall from roadside slope in mountainous area[J]. Journal of Disaster Prevention and Reduction,2021,37(4):1-8,15. (in Chinese)FENG Z, LU L, ZHANG C M, et al. Mechanism of rock collapse due to rainfall from roadside slope in mountainous area[J]. Journal of Disaster Prevention and Reduction, 2021, 37(4): 1-8,15. (in Chinese) [3] 卢 谅, 张越臣, 王宗建, 等. 落石冲击荷载作用下加筋土拦石墙冲击应力分布研究[J]. 岩石力学与工程学报,2021,40(5):997-1008. (LU L, ZHANG Y C, WANG Z J, et al. Study on impact stress distribution of ground reinforced embankments under rockfall impact[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(5):997-1008. (in Chinese)LU L, ZHANG Y C, WANG Z J, et al. Study on impact stress distribution of ground reinforced embankments under rockfall impact[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 997-1008. (in Chinese) [4] GE Z W, LIU H Y. Numerical investigation on the dynamic response of rockfall impacts on flexible barrier under seismic loading[J]. Natural Hazards,2023,115(2):1213-1234. doi: 10.1007/s11069-022-05591-6 [5] FITYUS S G, GIACOMINI A, BUZZI O. The significance of geology for the morphology of potentially unstable rocks[J]. Engineering Geology,2013,162:43-52. doi: 10.1016/j.enggeo.2013.05.007 [6] PERERA S, LAM N, PATHIRANA M, et al. Deterministic solutions for contact force generated by impact of windborne debris[J]. International Journal of Impact Engineering,2016,91:126-141. doi: 10.1016/j.ijimpeng.2016.01.002 [7] 陈 驰, 刘成清, 陈林雅, 等. 落石作用于钢筋混凝土棚洞的冲击力研究[J]. 公路交通科技,2015,32(1):102-109. (CHEN C, LIU C Q, CHEN L Y, et al. Study on impact force of rock-fall onto rock shed tunnel[J]. Journal of Highway and Transportation Research and Development,2015,32(1):102-109. (in Chinese) doi: 10.3969/j.issn.1002-0268.2015.01.017CHEN C, LIU C Q, CHEN L Y, et al. Study on impact force of rock-fall onto rock shed tunnel[J]. Journal of Highway and Transportation Research and Development, 2015, 32(1): 102-109. (in Chinese) doi: 10.3969/j.issn.1002-0268.2015.01.017 [8] 唐建辉. 落石冲击对隧道明洞结构的影响研究[D]. 成都: 西南交通大学, 2013. (TANG J H. Study on influence of shocks on the open tunnel structure[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese)TANG J H. Study on influence of shocks on the open tunnel structure[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese) [9] 闫 鹏, 方 秦, 张锦华, 等. 不同典型形状落石冲击砂垫层试验与量纲分析[J]. 爆炸与冲击,2021,41(7):073303. (YAN P, FANG Q, ZHANG J H, et al. Experimental study of different typical shape falling-rocks impacting on the sand cushion and dimensionless analysis[J]. Explosion and Shock Waves,2021,41(7):073303. (in Chinese) doi: 10.11883/bzycj-2020-0219YAN P, FANG Q, ZHANG J H, et al. Experimental study of different typical shape falling-rocks impacting on the sand cushion and dimensionless analysis[J]. Explosion and Shock Waves, 2021, 41(7): 073303. (in Chinese) doi: 10.11883/bzycj-2020-0219 [10] 何思明, 李新坡, 吴 永. 考虑弹塑性变形的泥石流大块石冲击力计算[J]. 岩石力学与工程学报,2007,26(8):1664-1669. (HE S M, LI X P, WU Y. Calculation of impact force of outrunner blocks in debris flow considering elastoplastic deformation[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(8):1664-1669. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.08.017HE S M, LI X P, WU Y. Calculation of impact force of outrunner blocks in debris flow considering elastoplastic deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1664-1669. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.08.017 [11] 陈颖骐, 王全才. 基于Hertz弹性理论和Thornton弹塑性假设的滚石冲击力的修正计算[J]. 科学技术与工程,2018,18(13):37-41. (CHEN Y Q, WANG Q C. Correction calculation of impact force of rockfall based on hertz contact theory and Thornton elastoplasticity hypothesis[J]. Science Technology and Engineering,2018,18(13):37-41. (in Chinese) doi: 10.3969/j.issn.1671-1815.2018.13.006CHEN Y Q, WANG Q C. Correction calculation of impact force of rockfall based on hertz contact theory and Thornton elastoplasticity hypothesis[J]. Science Technology and Engineering, 2018, 18(13): 37-41. (in Chinese) doi: 10.3969/j.issn.1671-1815.2018.13.006 [12] ZHENG D, BINIENDA W K. Effect of permanent indentation on the delamination threshold for small mass impact on plates[J]. International Journal of Solids and Structures,2007,44(25/26):8143-8158. [13] 刘红岩. 落石冲击下钢筋混凝土桩板墙的动态响应[J]. 中南大学学报(自然科学版),2022,53(6):2290-2299. (LIU H Y. Dynamic damage model for reinforced concrete pile-plate retaining wall under rockfall impact[J]. Journal of Central South University (Science and Technology),2022,53(6):2290-2299. (in Chinese)LIU H Y. Dynamic damage model for reinforced concrete pile-plate retaining wall under rockfall impact[J]. Journal of Central South University (Science and Technology), 2022, 53(6): 2290-2299. (in Chinese) [14] 吕泽鹏, 刘红岩. 落石冲击拦石墙的动力响应模拟研究[J]. 公路交通科技,2022,39(3):21-29. (LV Z P, LIU H Y. Simulation study on dynamic response of rock retaining wall under rockfall impact[J]. Journal of Highway and Transportation Research and Development,2022,39(3):21-29. (in Chinese) doi: 10.3969/j.issn.1002-0268.2022.03.003LV Z P, LIU H Y. Simulation study on dynamic response of rock retaining wall under rockfall impact[J]. Journal of Highway and Transportation Research and Development, 2022, 39(3): 21-29. (in Chinese) doi: 10.3969/j.issn.1002-0268.2022.03.003 [15] 袁进科, 黄润秋, 裴向军. 滚石冲击力测试研究[J]. 岩土力学,2014,35(1):48-54. (YUAN J K, HUANG R Q, PEI X J. Test research on rockfall impact force[J]. Rock and Soil Mechanics,2014,35(1):48-54. (in Chinese)YUAN J K, HUANG R Q, PEI X J. Test research on rockfall impact force[J]. Rock and Soil Mechanics, 2014, 35(1): 48-54. (in Chinese) [16] PICHLER B, HELLMICH C, MANG H A. Impact of rocks onto gravel design and evaluation of experiments[J]. International Journal of Impact Engineering,2005,31(5):559-578. doi: 10.1016/j.ijimpeng.2004.01.007 [17] 柏雪松, 李俊峰, 祁小博, 等. 落石冲击棚洞结构的动力响应研究[J]. 公路交通科技,2020,37(8):73-80. (BAI X S, LI J F, QI X B, et al. Study on dynamic response of shed-tunnel structure under rockfall impact[J]. Journal of Highway and Transportation Research and Development,2020,37(8):73-80. (in Chinese) doi: 10.3969/j.issn.1002-0268.2020.08.010BAI X S, LI J F, QI X B, et al. Study on dynamic response of shed-tunnel structure under rockfall impact[J]. Journal of Highway and Transportation Research and Development, 2020, 37(8): 73-80. (in Chinese) doi: 10.3969/j.issn.1002-0268.2020.08.010 [18] YAN P, ZHANG J H, FANG Q, et al. Numerical simulation of the effects of falling rock's shape and impact pose on impact force and response of RC slabs[J]. Construction and Building Materials,2018,160:497-504. doi: 10.1016/j.conbuildmat.2017.11.087 [19] 王东坡, 周良坤, 裴向军, 等. 滚石冲击棚洞砂土垫层物理模型试验及数值模拟研究[J]. 振动与冲击,2020,39(18):195-202. (WANG D P, ZHOU L K, PEI X J, et al. Experimental and numerical study on rockfall impacts on sand-soil cushions[J]. Journal of Vibration and Shock,2020,39(18):195-202. (in Chinese)WANG D P, ZHOU L K, PEI X J, et al. Experimental and numerical study on rockfall impacts on sand-soil cushions[J]. Journal of Vibration and Shock, 2020, 39(18): 195-202. (in Chinese) [20] ASTERIOU P, TSIAMBAOS G. Empirical model for predicting rockfall trajectory direction[J]. Rock Mechanics and Rock Engineering,2016,49(3):927-941. doi: 10.1007/s00603-015-0798-7 [21] 何思明, 沈 均, 吴 永. 滚石冲击荷载下棚洞结构动力响应[J]. 岩土力学,2011,32(3):781-788. (HE S M, SHEN J, WU Y. Rock shed dynamic response to impact of rock-fall[J]. Rock and Soil Mechanics,2011,32(3):781-788. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.03.024HE S M, SHEN J, WU Y. Rock shed dynamic response to impact of rock-fall[J]. Rock and Soil Mechanics, 2011, 32(3): 781-788. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.03.024 [22] 向 波, 何思明, 庄卫林, 等. 滚石冲击荷载下垫层材料的动力响应研究[J]. 公路交通科技,2015,32(1):45-49,56. (XIANG B, HE S M, ZHUANG W L, et al. Research on dynamic response of cushion under rockfall impact[J]. Journal of Highway and Transportation Research and Development,2015,32(1):45-49,56. (in Chinese) doi: 10.3969/j.issn.1002-0268.2015.01.008XIANG B, HE S M, ZHUANG W L, et al. Research on dynamic response of cushion under rockfall impact[J]. Journal of Highway and Transportation Research and Development, 2015, 32(1): 45-49,56. (in Chinese) doi: 10.3969/j.issn.1002-0268.2015.01.008 -