留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高烈度地震设防区巨厚堆积体锚碇深基坑稳定性研究

杜兆萌 刘天翔 伍运霖 雷航 李超 袁文

杜兆萌, 刘天翔, 伍运霖, 雷航, 李超, 袁文. 高烈度地震设防区巨厚堆积体锚碇深基坑稳定性研究[J]. 岩土工程技术, 2025, 39(5): 667-673. doi: 10.20265/j.cnki.issn.1007-2993.2024-0092
引用本文: 杜兆萌, 刘天翔, 伍运霖, 雷航, 李超, 袁文. 高烈度地震设防区巨厚堆积体锚碇深基坑稳定性研究[J]. 岩土工程技术, 2025, 39(5): 667-673. doi: 10.20265/j.cnki.issn.1007-2993.2024-0092
Du Zhaomeng, Liu Tianxiang, Wu Yunlin, Lei Hang, Li Chao, Yuan Wen. Stability of deep foundation pit anchored by thick accumulation in high intensity earthquake area[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(5): 667-673. doi: 10.20265/j.cnki.issn.1007-2993.2024-0092
Citation: Du Zhaomeng, Liu Tianxiang, Wu Yunlin, Lei Hang, Li Chao, Yuan Wen. Stability of deep foundation pit anchored by thick accumulation in high intensity earthquake area[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(5): 667-673. doi: 10.20265/j.cnki.issn.1007-2993.2024-0092

高烈度地震设防区巨厚堆积体锚碇深基坑稳定性研究

doi: 10.20265/j.cnki.issn.1007-2993.2024-0092
基金项目: 四川省交通运输科技项目(2024-A-04;2023-A-02);四川省科技计划(2022YFG0141);四川省公路规划勘察设计研究院有限公司科研项目(KYXM2021000049;KYXM2022000038;KYXM2024000109)
详细信息
    作者简介:

    杜兆萌,女,1995年生,硕士,工程师。研究方向:特殊支挡结构设计。E-mail:473453892@qq.com

    通讯作者:

    刘天翔,男,1980年生,硕士,正高级工程师。研究方向:公路地质灾害防治设计与监测预警。E-mail:411495191@qq.com

  • 中图分类号: TU473

Stability of deep foundation pit anchored by thick accumulation in high intensity earthquake area

  • 摘要: 锚碇基坑的稳定性是影响悬索桥工程安全的主要控制因素。四川某特大悬索桥位于高烈度地震设防区,其锚碇基坑位于巨厚堆积体中,基坑边坡最大坡高达110 m。以该锚碇基坑工程为例,针对巨厚层堆积体上超百米深基坑的长期稳定性问题开展研究。采用原位密度试验、现场剪切试验及变形试验,研究基坑土体强度及变形特性,得出了基坑土体物理力学参数。应用有限差分软件对锚碇基坑进行地震三维模拟计算,结果表明在强震下深厚堆积体基坑极易诱发变形甚至滑移失稳破坏,坡体最大位移约20 m,坡体失稳范围厚度约15~23 m。据此,提出桥梁基坑防护两水准要求以及开挖预加固、分步开挖、分区防护的综合治理措施,在此基础上采用动力时程分析法进行基坑稳定性验算。结果表明,在输入30 s汶川地震波后加固后的坡体最大位移仅为0.223 m。基坑开挖支护完成后连续36个月的监测数据显示坡体最大位移量小于9.05 mm,与数值计算结果基本吻合,验证了加固措施和数值计算方法的有效性。

     

  • 图  1  锚碇基坑开挖边坡典型剖面

    图  2  剪切试验装置

    图  3  计算模型

    图  4  基坑开挖完成时位移及其矢量图

    图  5  基坑开挖完成时塑性区分布

    图  6  基坑开挖完成后剪应变增量及稳定系数

    图  7  动力时程分析三维模型

    图  8  深基坑支护措施模型

    图  9  震后基坑位移及其矢量图

    图  10  基坑及边坡防护全景图

    图  11  第11级边坡后缘位移–时间曲线

    表  1  剪切试验结果[19]

    试点编号 含水状态 σ/MPa τ/MPa tan φ c/kPa
    1 天然 0.75 0.49 0.47 128
    2 天然 1.00 0.57
    3 天然 0.25 0.24
    4 天然 0.51 0.42
    5 泡水10 h 0.73 0.50 0.44 88
    6 泡水10 h 1.01 0.57
    7 浸水 0.25 0.19
    8 浸水 0.50 0.30
    下载: 导出CSV

    表  2  变形试验结果[19]

    试点编号 距洞口
    位置/m
    最大应力
    /MPa
    变形模量
    /MPa
    弹性模量
    /MPa
    备注
    1 15.8 1.0 149.76 338.15 天然
    2 19 1.0 328.16 579.69 浸水湿润
    3 23 1.0 696.39 886.58 天然
    下载: 导出CSV

    表  3  各区域土层的物理力学参数

    区域 弹性模量
    /MPa
    泊松比 黏聚力
    /kPa
    内摩擦角
    /(°)
    重度
    /(kN·m−3)
    Q4col+dl含砾黏土 300 0.35 125 24 23
    Q4col+dl碎石土 500 0.33 100 28 23
    Q3h碎石土 600 0.31 115 33 24
    Q3h块石土 800 0.3 110 35 24
    下载: 导出CSV
  • [1] 李永盛. 江阴长江公路大桥北锚碇模型试验研究[J]. 同济大学学报, 1995, 23(2): 134-140. (LI Y S. Experimental study on the north anchorage of the Jiangyin Yangtze bridge[J]. Journal of Tongji University, 1995, 23(2): 134-140. (in Chinese)

    LI Y S. Experimental study on the north anchorage of the Jiangyin Yangtze bridge[J]. Journal of Tongji University, 1995, 23(2): 134-140. (in Chinese)
    [2] 李家平, 张子新, 黄宏伟, 等. 宁波庆丰大桥锚碇室内相似模型试验研究[J]. 同济大学学报(自然科学版), 2005, 33(8): 1011-1016. (LI J P, ZHANG Z X, HUANG H W, et al. Research on similarity model test of anchorage of Qingfeng suspension bridge in Ningbo[J]. Journal of Tongji University (Natural Science), 2005, 33(8): 1011-1016. (in Chinese) doi: 10.3321/j.issn:0253-374X.2005.08.004

    LI J P, ZHANG Z X, HUANG H W, et al. Research on similarity model test of anchorage of Qingfeng suspension bridge in Ningbo[J]. Journal of Tongji University (Natural Science), 2005, 33(8): 1011-1016. (in Chinese) doi: 10.3321/j.issn:0253-374X.2005.08.004
    [3] 孙 钧, 赵其华, 熊孝波. 润扬长江公路大桥北锚碇基础施工变形的智能预测–工程实录研究[J]. 岩土力学, 2003, 24(S2): 1-7. (SUN J, ZHAO Q H, XIONG X B. Intelligent prediction on deformations in the construction of anchor block-abutment foundation of an extremely long-span suspension bridge (Runyang Bridge over Yangzi River)—a case history study[J]. Rock and Soil Mechanics, 2003, 24(S2): 1-7. (in Chinese)

    SUN J, ZHAO Q H, XIONG X B. Intelligent prediction on deformations in the construction of anchor block-abutment foundation of an extremely long-span suspension bridge (Runyang Bridge over Yangzi River)—a case history study[J]. Rock and Soil Mechanics, 2003, 24(S2): 1-7. (in Chinese)
    [4] 田常兵, 罗红明, 池泽成, 等. 湖北省十白公路阳南沟隧道进口边坡防护方案论证[J]. 安全与环境工程, 2016, 23(3): 140-145. (TIAN C B, LUO H M, CHI Z C, et al. Proof of protection scheme for Yangnangou Tunnel entrance slope of Shiyan-Baihe Expressway in Hubei Province[J]. Safety and Environmental Engineering, 2016, 23(3): 140-145. (in Chinese)

    TIAN C B, LUO H M, CHI Z C, et al. Proof of protection scheme for Yangnangou Tunnel entrance slope of Shiyan-Baihe Expressway in Hubei Province[J]. Safety and Environmental Engineering, 2016, 23(3): 140-145. (in Chinese)
    [5] 李晓凡, 徐正宣, 王佳亮. 渝黔铁路乌江大桥左岸边坡稳定性评价[J]. 铁道建筑, 2014(6): 66-68. (LI X F, XU Z X, WANG J L. Stability evaluation of the left bank slope of the Wujiang Bridge on the Chongqing-Guiyang Railway[J]. Railway Engineering, 2014(6): 66-68. (in Chinese)

    LI X F, XU Z X, WANG J L. Stability evaluation of the left bank slope of the Wujiang Bridge on the Chongqing-Guiyang Railway[J]. Railway Engineering, 2014(6): 66-68. (in Chinese)
    [6] 邹启贤, 申思冉, 罗昌宏, 等. 基于FLAC3D的某桥头边坡稳定性数值模拟分析[J]. 安全与环境工程, 2012, 19(4): 133-136. (ZOU Q X, SHEN S R, LUO C H, et al. Simulation analysis of landslide stability for a slope based on 3D Fast Lagrangian Method[J]. Safety and Environmental Engineering, 2012, 19(4): 133-136. (in Chinese) doi: 10.3969/j.issn.1671-1556.2012.04.031

    ZOU Q X, SHEN S R, LUO C H, et al. Simulation analysis of landslide stability for a slope based on 3D Fast Lagrangian Method[J]. Safety and Environmental Engineering, 2012, 19(4): 133-136. (in Chinese) doi: 10.3969/j.issn.1671-1556.2012.04.031
    [7] YANG X G, ZHAI E D, WANG Y, et al. A comparative study of pseudo-static slope stability analysis using different design codes[J]. Water Science and Engineering, 2018, 11(4): 310-317. doi: 10.1016/j.wse.2018.12.003
    [8] MICHALOWSKI R L, MARTEL T. Stability charts for 3D failures of steep slopes subjected to seismic excitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(2): 183-189. doi: 10.1061/(ASCE)GT.1943-5606.0000412
    [9] HACK R, ALKEMA D, KRUSE G A M, et al. Influence of earthquakes on the stability of slopes[J]. Engineering Geology, 2007, 91(1): 4-15. doi: 10.1016/j.enggeo.2006.12.016
    [10] ÇADIR C C, VEKLI M, ŞAHINKAYA F. Numerical analysis of a finite slope improved with stone columns under the effect of earthquake force[J]. Natural Hazards, 2021, 106(1): 173-211. doi: 10.1007/s11069-020-04456-0
    [11] KONTOE S, PELECANOS L, POTTS D. An important pitfall of pseudo-static finite element analysis[J]. Computers and Geotechnics, 2013, 48: 41-50. doi: 10.1016/j.compgeo.2012.09.003
    [12] YANG C W, ZHANG J J, FU X, et al. Improvement of pseudo-static method for slope stability analysis[J]. Journal of Mountain Science, 2014, 11(3): 625-633. doi: 10.1007/s11629-013-2756-8
    [13] 郝建斌. 地震作用下边坡稳定性研究进展[J]. 世界地震工程, 2014, 30(1): 145-153. (HAO J B. Progress of research on stability of slope subjected to seismic excitation[J]. World Earthquake Engineering, 2014, 30(1): 145-153. (in Chinese)

    HAO J B. Progress of research on stability of slope subjected to seismic excitation[J]. World Earthquake Engineering, 2014, 30(1): 145-153. (in Chinese)
    [14] ZHAO T, SUN J Z, ZHANG B, et al. Analysis of slope stability with dynamic overloading from earthquake[J]. Journal of Earth Science, 2012, 23(3): 285-296.
    [15] LI B, WU L, CHEN J, et al. The influences of destruction effects of earthquake faults on the dynamic stability of highway slopes[J]. Geotechnical and Geological Engineering, 2016, 34(5): 1513-1523.
    [16] MANSOUR M F. A numerical study on permanent seismic deformation of dry sand slopes[J]. International Journal of Geotechnical Engineering, 2016, 10(2): 99-106.
    [17] ZHANG X J, HUANG L, HOU Y J, et al. Study on the stability of the geogrids-reinforced earth slope under the coupling effect of rainfall and earthquake[J]. Mathematical Problems in Engineering, 2020, (1): 5182537.
    [18] QU H L, LUO H, LIU L, et al. Analysis of dynamic coupling characteristics of the slope reinforced by sheet pile wall[J]. Shock and Vibration, 2017, (1): 9043518.
    [19] 王昱仁. 分体井筒式地下连续墙锚碇基础水平承载特性研究[D]. 南京: 东南大学, 2022. (WANG Y R. Research on horizontal bearing characteristics of split shaft diaphragm wall anchorage foundation[D]. Nanjing: Southeast University, 2022. (in Chinese)

    WANG Y R. Research on horizontal bearing characteristics of split shaft diaphragm wall anchorage foundation[D]. Nanjing: Southeast University, 2022.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-01
  • 录用日期:  2024-05-09
  • 刊出日期:  2025-10-10

目录

    /

    返回文章
    返回