留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉拔荷载下轮胎格栅–细粒土界面承载特性研究

岳红亚 房彦宏 吴建东 刘亚珍 王媛 于洋 张常勇

岳红亚, 房彦宏, 吴建东, 刘亚珍, 王媛, 于洋, 张常勇. 拉拔荷载下轮胎格栅–细粒土界面承载特性研究[J]. 岩土工程技术, 2025, 39(5): 744-751. doi: 10.20265/j.cnki.issn.1007-2993.2024-0289
引用本文: 岳红亚, 房彦宏, 吴建东, 刘亚珍, 王媛, 于洋, 张常勇. 拉拔荷载下轮胎格栅–细粒土界面承载特性研究[J]. 岩土工程技术, 2025, 39(5): 744-751. doi: 10.20265/j.cnki.issn.1007-2993.2024-0289
Yue Hongya, Fang Yanhong, Wu Jiandong, Liu Yazhen, Wang Yuan, Yu Yang, Zhang Changyong. Interface bearing characteristics of reinforced fine soil of scrap tire grille under drawing load[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(5): 744-751. doi: 10.20265/j.cnki.issn.1007-2993.2024-0289
Citation: Yue Hongya, Fang Yanhong, Wu Jiandong, Liu Yazhen, Wang Yuan, Yu Yang, Zhang Changyong. Interface bearing characteristics of reinforced fine soil of scrap tire grille under drawing load[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(5): 744-751. doi: 10.20265/j.cnki.issn.1007-2993.2024-0289

拉拔荷载下轮胎格栅–细粒土界面承载特性研究

doi: 10.20265/j.cnki.issn.1007-2993.2024-0289
基金项目: 山东省自然科学基金(ZR2022QE064)
详细信息
    作者简介:

    岳红亚,男,1990年生,博士,高级工程师,主要从事大宗固废再生资源化利用等方面的研究。E-mail:yuehongya@126.com

    通讯作者:

    房彦宏,女,2001年生,在读硕士研究生,主要从事固废再利用的研究。E-mail:202315463@mail.sdu.edu.cn

  • 中图分类号: TU476

Interface bearing characteristics of reinforced fine soil of scrap tire grille under drawing load

  • 摘要: 为保证地基结构稳定性,提升土体抗拉强度,通常在地基中放置加筋材料。基于废旧轮胎良好的抗拉伸性与界面粗糙性,提出将废旧轮胎格栅作为地基加筋新材料。通过拉拔试验研究了不同上覆荷载、填料压实度、轮胎条带宽度、网孔尺寸等因素对废旧轮胎格栅加筋细粒土承载性能的影响。结果表明:轮胎条带加筋粉土的承载能力随上覆荷载的增大而提高,细粒土填料越密实轮胎条带峰值拉拔力越大,条带宽度对粉土地基加筋效果影响最明显,条带宽度增加2 cm,峰值拉拔力提高接近50%;轮胎格栅承载力随网孔尺寸的增大而逐渐减弱。研究结果证实废旧轮胎格栅可以有效提高细粒土地基的承载能力,增强土体的抗拉强度,并为进一步的理论研究和技术应用提供了参考。

     

  • 图  1  拉拔试验仪简图

    图  2  粉土粒径分布曲线

    图  3  旋切得到的轮胎条带

    图  4  现场轮胎格栅铺设图

    图  5  旋切下轮胎试样拉伸力−应变曲线

    图  6  轮胎格栅形式

    图  7  拉拔试验流程图

    图  8  不同上覆荷载下轮胎条带拉拔荷载−位移曲线

    图  9  不同压实度下轮胎条带拉拔荷载−位移曲线

    图  10  不同宽度轮胎条带的拉拔荷载−位移曲线

    图  11  不同轮胎格栅孔径拉拔荷载−位移曲线(p=80 kPa)

    图  12  轮胎格栅界面图

    图  13  条带峰值拉拔力随法向应力变化图

    图  14  格栅峰值拉拔力随网格尺寸变化图

    表  1  粉土的颗粒组成特征

    配料
    含水量/%
    实际
    含水量/%
    湿密度ρ
    /(g·cm−3
    干密度ρd
    /(g·cm−3
    粉土10.08.91.661.53
    12.012.01.721.54
    14.013.91.761.55
    16.016.21.831.58
    18.017.01.831.57
    20.020.01.801.55
    均值15.0014.671.771.55
    下载: 导出CSV

    表  2  旋切下轮胎条带拉伸试验均值

    试样编号 2%应变 5%应变 10%应变 峰值应变
    拉伸力
    F2%/kN
    拉伸强度
    /(kN·m−1
    拉伸力
    F5%/kN
    拉伸强度
    /(kN·m−1
    拉伸力
    F10%/kN
    拉伸强度
    /(kN·m−1
    拉伸力
    Fmax/kN
    拉伸强度
    /(kN·m−1
    峰值应变
    /%
    1 1.036 51.800 2.917 58.340 7.382 73.820 7.685 73.190 10.500
    2 1.020 50.989 2.759 55.184 6.709 67.090 8.526 67.670 12.600
    3 1.047 52.350 2.759 55.180 6.867 68.670 8.370 66.960 12.500
    4 0.764 38.200 2.202 44.040 6.499 64.990 6.689 64.320 10.400
    5 1.016 50.800 2.716 54.320 6.794 67.940 8.254 69.360 11.900
    均值 0.976 48.820 2.671 53.410 6.850 68.500 7.905 68.300 11.580
    下载: 导出CSV

    表  3  不同筋材类型的对比试验工况

    筋材类型 填料类型 条带宽度
    /cm
    填料压实度
    /%
    上覆荷载
    /kPa
    网孔尺寸
    /cm
    轮胎条带 粉土 2 90 80
    4
    6
    2 80 80
    85
    2 90 60
    100
    轮胎格栅 粉土 2 90 80 10×10
    15×15
    20×20
    下载: 导出CSV

    表  4  不同上覆荷载下轮胎条带的峰值拉拔力

    上覆荷载/kPa峰值拉拔力/kN对应位移量/mm初始模量/MPa
    600.8399.2833.828
    801.1148.3315.948
    1001.3327.9918.025
    下载: 导出CSV

    表  5  不同压实度下轮胎条带的峰值拉拔力

    压实度/%峰值拉拔力/kN对应位移量/mm初始模量/MPa
    800.7596.9004.213
    850.8997.9505.044
    901.1208.2505.765
    下载: 导出CSV

    表  6  不同条带宽度下轮胎条带的峰值拉拔力

    宽度
    /cm
    峰值拉
    拔力/kN
    对应位
    移量/mm
    单位宽度下的极限
    拉拔力/(kN·cm−1
    横截
    面积/m2
    初始
    模量/MPa
    2 1.114 7.966 0.557 0.0003 9.326
    4 1.778 7.277 0.444 0.0006 12.676
    6 2.511 6.970 0.419 0.0009 21.084
    下载: 导出CSV

    表  7  不同格栅孔径下轮胎条带的峰值拉拔力

    网孔尺寸/cm峰值拉拔力/kN对应位移量/mm初始模量/MPa
    10×1012.25034.85026.670
    15×1510.05731.92853.332
    20×207.51925.95066.667
    下载: 导出CSV

    表  8  不同法向应力下摩阻参数

    法向应力
    /kPa
    条带宽度
    /cm
    加筋面积
    /m2
    内摩擦角
    /(°)
    有效接触
    面系数
    摩擦
    阻力/kN
    60 2 0.012 28.8 1.038 0.822
    80 1.095
    100 1.369
    下载: 导出CSV

    表  9  不同网格尺寸下端阻计算参数

    网格尺
    寸/cm
    峰值拉
    拔力/kN
    摩擦
    阻力/kN
    条带总
    个数/个
    横肋单元
    个数/个
    横肋单元
    有效系数/kPa
    横肋单元
    承载力/kN
    10×10 12.250 1.095 10 5 122.125 0.164
    15×15 10.057 8 4
    20×20 7.519 6 3
    下载: 导出CSV

    表  10  轮胎格栅峰值拉拔力计算结果

    网格尺寸/cm 摩擦阻力/kN 端阻力PRB
    /kN
    峰值拉拔力/kN
    10×10 10$ \mathrm{\mathit{P}}_{\mathrm{R}\mathrm{S}} $=10.950 1.499 12.449
    15×15 8$ \mathrm{\mathit{P}}_{\mathrm{R}\mathrm{S}} $=8.760 1.199 9.959
    20×20 $ 6\mathrm{\mathit{P}}_{\mathrm{R}\mathrm{S}} $=6.750 $ 0.900 $ 7.650
    下载: 导出CSV
  • [1] 余文章, 李向清, 庞金波. 软弱土地基不均匀沉降的桩基加固应用及研究[J]. 工程质量, 2018, 36(8): 48-51. (YU W Z, LI X Q, PANG J B. The application and research of pile foundation reinforcement for differential settlement of soft soil foundation[J]. Construction Quality, 2018, 36(8): 48-51. (in Chinese) doi: 10.3969/j.issn.1671-3702.2018.08.011

    YU W Z, LI X Q, PANG J B. The application and research of pile foundation reinforcement for differential settlement of soft soil foundation[J]. Construction Quality, 2018, 36(8): 48-51. (in Chinese) doi: 10.3969/j.issn.1671-3702.2018.08.011
    [2] 王家全, 张亮亮, 刘政权, 等. 土工格栅加筋砂土地基大模型动载试验研究[J]. 岩土力学, 2018, 39(10): 3539-3547. (WANG J Q, ZHANG L L, LIU Z Q, et al. Large model test on geogrid reinforced sand soil foundation under dynamic loading[J]. Rock and Soil Mechanics, 2018, 39(10): 3539-3547. (in Chinese)

    WANG J Q, ZHANG L L, LIU Z Q, et al. Large model test on geogrid reinforced sand soil foundation under dynamic loading[J]. Rock and Soil Mechanics, 2018, 39(10): 3539-3547. (in Chinese)
    [3] 郭力群, 马时冬. 土工格栅加筋垫层用于处理特殊地基[J]. 岩土工程技术, 2005, 19(3): 109-112. (GUO L Q, MA S D. Geogrid reinforcement cushion for special ground treatment[J]. Geotechnical Engineering Technique, 2005, 19(3): 109-112. (in Chinese) doi: 10.3969/j.issn.1007-2993.2005.03.001

    GUO L Q, MA S D. Geogrid reinforcement cushion for special ground treatment[J]. Geotechnical Engineering Technique, 2005, 19(3): 109-112. (in Chinese) doi: 10.3969/j.issn.1007-2993.2005.03.001
    [4] WU J T H, PHAM T Q. Load-carrying capacity and required reinforcement strength of closely spaced soil-geosynthetic composites[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(9): 1468-1476. doi: 10.1061/(ASCE)GT.1943-5606.0000885
    [5] AMBRIZ B, MUN W, MCCARTNEY J S. Impact of temperature on the pullout of reinforcing geotextiles from unsaturated silt[J]. Geosynthetics International, 2020, 27(1): 1-15. doi: 10.1680/jgein.19.00040
    [6] 王 昊. TDA-粉土复合填料中废旧轮胎条带拉拔特性及承载机理研究[D]. 济南: 山东大学, 2022. (WANG H. Research on the pullout behavior and bearing mechanism of waste tire strips embedded in TDA-silt composite[D]. Jinan: Shandong University, 2022. (in Chinese)

    WANG H. Research on the pullout behavior and bearing mechanism of waste tire strips embedded in TDA-silt composite[D]. Jinan: Shandong University, 2022. (in Chinese)
    [7] 李丽华, 余长道. 废旧轮胎加筋土性能试验研究[J]. 长江科学院院报, 2019, 36(11): 1-6. (LI L H, YU C D. Properties of soil reinforced by waste tire[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(11): 1-6. (in Chinese) doi: 10.11988/ckyyb.20190233

    LI L H, YU C D. Properties of soil reinforced by waste tire[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(11): 1-6. (in Chinese) doi: 10.11988/ckyyb.20190233
    [8] 李晓亮, 刘 源, 李玉鑫, 等. 砂土介质中废旧轮胎加筋条带拉拔特性[J]. 山东大学学报(工学版), 2021, 51(4): 54-60,70. (LI X L, LIU Y, LI Y X, et al. The pullout features of reinforced strips of waste tires in sandy media[J]. Journal of Shandong University (Engineering Science), 2021, 51(4): 54-60,70. (in Chinese)

    LI X L, LIU Y, LI Y X, et al. The pullout features of reinforced strips of waste tires in sandy media[J]. Journal of Shandong University (Engineering Science), 2021, 51(4): 54-60,70. (in Chinese)
    [9] 孙 杰, 张宏博, 程 钰, 等. 基于TDA填料的废旧轮胎条带加筋砂土边坡承载特性[J]. 山东大学学报(工学版), 2023, 53(1): 49-59,67. (SUN J, ZHANG H B, CHENG Y, et al. Bearing characteristics of reinforced sand slope with scrap tire strips and TDA backfills[J]. Journal of Shandong University (Engineering Science), 2023, 53(1): 49-59,67. (in Chinese)

    SUN J, ZHANG H B, CHENG Y, et al. Bearing characteristics of reinforced sand slope with scrap tire strips and TDA backfills[J]. Journal of Shandong University (Engineering Science), 2023, 53(1): 49-59,67. (in Chinese)
    [10] 程 阳. 废旧轮胎颗粒改良砂土路基动力特性研究[D]. 北京: 北京建筑大学, 2020. (CHENG Y. Study on dynamic characteristics of sand subgrade improved by waste tire particles[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020. (in Chinese)

    CHENG Y. Study on dynamic characteristics of sand subgrade improved by waste tire particles[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020. (in Chinese)
    [11] MA Q, DENG Q, MOU J, et al. Large-scale direct shear test on scrap tire strip reinforced brick powder[J]. Advances in Civil Engineering, 2019, 2019(1): 6046037. doi: 10.1155/2019/6046037
    [12] 章清涛, 刘晓威, 高 健, 等. 坡顶荷载作用下废旧轮胎条带加筋边坡承载特性[J]. 山东大学学报(工学版), 2022, 52(3): 70-79. (ZHANG Q T, LIU X W, GAO J, et al. Bearing capacities of reinforced slope with scrap tire strips under vertical loading[J]. Journal of Shandong University (Engineering Science), 2022, 52(3): 70-79. (in Chinese)

    ZHANG Q T, LIU X W, GAO J, et al. Bearing capacities of reinforced slope with scrap tire strips under vertical loading[J]. Journal of Shandong University (Engineering Science), 2022, 52(3): 70-79. (in Chinese)
    [13] 谢红梅. 格栅(条带式/返包式)加筋塞土轮胎的界面力学特性研究[D]. 镇江: 江苏科技大学, 2022. (XIE H M. Study on interface mechanical properties of geogrid (striped reinforcement/wrapped reinforcement) reinforced plug-soil tire[D]. Zhenjiang: Jiangsu University of Science and Technology, 2022. (in Chinese)

    XIE H M. Study on interface mechanical properties of geogrid (striped reinforcement/wrapped reinforcement) reinforced plug-soil tire[D]. Zhenjiang: Jiangsu University of Science and Technology, 2022. (in Chinese)
    [14] 程 钢, 赵国群, 管延锦, 等. 轮胎橡胶材料力学性能试验研究[J]. 弹性体, 2003, 13(4): 6-9. (CHENG G, ZHAO G Q, GUAN Y J, et al. Experimental study on mechanical properities of tyre rubber materials[J]. China Elastomerics, 2003, 13(4): 6-9. (in Chinese) doi: 10.3969/j.issn.1005-3174.2003.04.002

    CHENG G, ZHAO G Q, GUAN Y J, et al. Experimental study on mechanical properities of tyre rubber materials[J]. China Elastomerics, 2003, 13(4): 6-9. (in Chinese) doi: 10.3969/j.issn.1005-3174.2003.04.002
    [15] 陈艳君. 废旧轮胎加筋土界面力学性能研究[D]. 武汉: 湖北工业大学, 2017. (CHEN Y J. Research on the interface mechanical properties of waste tyre-reinforced soil[D]. Wuhan: Hubei University of Technology, 2017. (in Chinese)

    CHEN Y J. Research on the interface mechanical properties of waste tyre-reinforced soil[D]. Wuhan: Hubei University of Technology, 2017. (in Chinese)
    [16] JEWELL R A, MILLIGAN G W E, DUBOIS D, et al. Interaction between soil and geogrids[M]//Science and Engineering Research Council. Polymer Grid Reinforcement. London: T. Telford, 1984: 18-30.
  • 加载中
图(14) / 表(10)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-26
  • 修回日期:  2024-09-12
  • 录用日期:  2024-10-29
  • 刊出日期:  2025-10-10

目录

    /

    返回文章
    返回