留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MobileNet轻量化模型的滑坡智能识别

马建良 张紫杉 李建光 刘欣 介玉新

马建良, 张紫杉, 李建光, 刘欣, 介玉新. 基于MobileNet轻量化模型的滑坡智能识别[J]. 岩土工程技术, 2026, 40(1): 18-25. doi: 10.20265/j.cnki.issn.1007-2993.2024-0295
引用本文: 马建良, 张紫杉, 李建光, 刘欣, 介玉新. 基于MobileNet轻量化模型的滑坡智能识别[J]. 岩土工程技术, 2026, 40(1): 18-25. doi: 10.20265/j.cnki.issn.1007-2993.2024-0295
MA Jianliang, ZHANG Zishan, LI Jianguang, LIU Xin, JIE Yuxin. Intelligent identification of landslide region based on MobileNet network[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2026, 40(1): 18-25. doi: 10.20265/j.cnki.issn.1007-2993.2024-0295
Citation: MA Jianliang, ZHANG Zishan, LI Jianguang, LIU Xin, JIE Yuxin. Intelligent identification of landslide region based on MobileNet network[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2026, 40(1): 18-25. doi: 10.20265/j.cnki.issn.1007-2993.2024-0295

基于MobileNet轻量化模型的滑坡智能识别

doi: 10.20265/j.cnki.issn.1007-2993.2024-0295
基金项目: 国家自然科学基金面上项目(52090081;52108372);中国博后科学基金面上资助(2022M723533)
详细信息
    作者简介:

    马建良,男,1980年生,硕士,高级工程师,主要从事测绘数据智能分析等方向的研究。E-mail:majl002@avic.com

    通讯作者:

    张紫杉,男,1990年生,博士,助理研究员,主要从事滑坡智能分析方向的研究。E-mail:zhangzs031@avic.com

  • 中图分类号: P642.22;TP75

Intelligent identification of landslide region based on MobileNet network

  • 摘要: 传统的滑坡编录统计通常采用人工现场踏勘形式,效率低下且可能遗漏部分区域。目前,主流的基于图像识别的滑坡编录技术通常需要高性能设备,并需要较高的模型训练成本,因而不适合在滑坡现场快速筛查中应用。本研究引入MoblieNet轻量化模型,使用DeepLabV3架构对航空摄影图像中的滑坡进行快速智能识别和边界定位。与传统的卷积神经网络(CNN)图像分割方法相比,该方法可以在传统方案10%的训练时间内,实现超过90%的准确度,可以更好地契合工程上对于显性滑坡快速智能识别需求,适用于大面积区域滑坡点的快速筛查与编录。

     

  • 图  1  主要技术路线

    Figure  1.  Main technical route

    图  2  基于MobileNet网络的DeepLabV3+学习网络架构

    Figure  2.  Deeplabv3+ Deep learning architecture based on the MobileNet network

    图  3  基于DLT深度学习工具箱的滑坡识别流程

    Figure  3.  Landslide recognition process based on the Deep Learning Toolbox (DLT)

    图  4  滑坡智能识别程序功能模块

    Figure  4.  Functional modules of the landslide intelligent identification program

    图  5  模型训练准确度与损失函数值

    Figure  5.  Model training accuracy and loss function values

    图  6  代表性滑坡体识别结果

    Figure  6.  Identification results of representative landslide

    图  7  应用不同算法的滑坡识别结果对比

    Figure  7.  Comparison of landslide identification results using different algorithms

    图  8  59#边坡智能识别结果分析

    Figure  8.  Analysis of intelligent identification results for slope 59#

    表  1  训练设备与训练参数

    Table  1.   Training equipment and training parameters

    训练设备训练参数
    CPUIntel Xeon Gold 5218 @2.3GHZ优化器Adam
    GPUNvidia RTX A4000 16G学习率方案Piecewise
    RAMDDR4 2666MHZ 128G最大步长20
    初始学习率1×10−4
    L2正则化率0.005
    最小批大小8
    下载: 导出CSV

    表  2  本文算法与经典分割算法时间准确度对比

    Table  2.   Comparison of time and accuracy between the proposed algorithm and classic segmentation algorithms

    测试模型 训练用时 最大准确度/%
    本文 1 min 51 s 95.91
    ResNet-50 3 min 53 s 97.50
    InceptionResNet 6 min 8 s 94.93
    下载: 导出CSV
  • [1] WANG H J, ZHANG L M, YIN K S, et al. Landslide identification using machine learning[J]. Geoscience Frontiers, 2021, 12(1): 351-364. doi: 10.1016/j.gsf.2020.02.012
    [2] 巨袁臻, 许 强, 金时超, 等. 使用深度学习方法实现黄土滑坡自动识别[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1747-1755. (JU Y Z, XU Q, JIN S C, et al. Automatic object detection of loess landslide based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. (in Chinese)

    JU Y Z, XU Q, JIN S C, et al. Automatic object detection of loess landslide based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. (in Chinese)
    [3] 王 涛. 遥感目标识别的轻量化深度学习方法研究[D]. 成都: 成都理工大学, 2022. (WANG T. Research on lightweight deep learning method for remote sensing object[D]. Chengdu: Chengdu University of Technology, 2022. (in Chinese)

    WANG T. Research on lightweight deep learning method for remote sensing object[D]. Chengdu: Chengdu University of Technology, 2022. (in Chinese)
    [4] 毛佳琪. 基于对抗性DeepLabV3+算法的滑坡识别[D]. 成都: 成都理工大学, 2023. (MAO J Q. Landslide identification based on the adversarial DeepLabV3+ algorithm[D]. Chengdu: Chengdu University of Technology, 2023. (in Chinese)

    MAO J Q. Landslide identification based on the adversarial DeepLabV3+ algorithm[D]. Chengdu: Chengdu University of Technology, 2023. (in Chinese)
    [5] DONG A N, DOU J, LI C D, et al. Accelerating cross-scene co-seismic landslide detection through progressive transfer learning and lightweight deep learning strategies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4410213.
    [6] JIANG Z Y, WANG M, LIU K. Comparisons of convolutional neural network and other machine learning methods in landslide susceptibility assessment: a case study in Pingwu[J]. Remote Sensing, 2023, 15(3): 798. doi: 10.3390/rs15030798
    [7] 蔡浩杰, 韩海辉, 张雨莲, 等. 基于地形特征融合的卷积神经网络滑坡识别[J]. 地球科学与环境学报, 2022, 44(3): 568-579. (CAI H J, HAN H H, ZHANG Y L, et al. Convolutional neural network landslide recognition based on terrain feature fusion[J]. Journal of Earth Sciences and Environment, 2022, 44(3): 568-579. (in Chinese)

    CAI H J, HAN H H, ZHANG Y L, et al. Convolutional neural network landslide recognition based on terrain feature fusion[J]. Journal of Earth Sciences and Environment, 2022, 44(3): 568-579. (in Chinese)
    [8] 高秉海, 何 毅, 张立峰, 等. 顾及InSAR形变的CNN滑坡易发性动态评估——以刘家峡水库区域为例[J]. 岩石力学与工程学报, 2023, 42(2): 450-465. (GAO B H, HE Y, ZHANG L F, et al. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation: a case study of Liujiaxia reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 450-465. (in Chinese)

    GAO B H, HE Y, ZHANG L F, et al. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation: a case study of Liujiaxia reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 450-465. (in Chinese)
    [9] 赵占骜, 王继周, 毛 曦, 等. 多维CNN耦合的滑坡易发性评价方法[J]. 武汉大学学报(信息科学版), 2024, 49(8): 1466-1481. (ZHAO Z A, WANG J Z, MAO X, et al. A multi-dimensional CNN coupled landslide susceptibility assessment method[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1466-1481. (in Chinese)

    ZHAO Z A, WANG J Z, MAO X, et al. A multi-dimensional CNN coupled landslide susceptibility assessment method[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1466-1481. (in Chinese)
    [10] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
    [11] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 833-851.
    [12] 曾 超, 曹振宇, 苏凤环, 等. 四川及周边滑坡泥石流灾害高精度航空影像及解译数据集(2008-2020年)[J]. 中国科学数据: 中英文网络版, 2022, 7(2): 195-205. (Zeng C, Cao Z Y, Su F H, et al. High-precision aerial image and interpretation dataset of landslide and debris flow disasters in Sichuan and its surrounding areas (2008–2020)[J]. China Scientific Data (Online in Chinese and English), 2022, 7(2): 195-205. (in Chinese) doi: 10.11922/noda.2021.0005.zh

    Zeng C, Cao Z Y, Su F H, et al. High-precision aerial image and interpretation dataset of landslide and debris flow disasters in Sichuan and its surrounding areas (2008–2020)[J]. China Scientific Data (Online in Chinese and English), 2022, 7(2): 195-205. doi: 10.11922/noda.2021.0005.zh
    [13] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
    [14] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2017: 4278-4284.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  3
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2025-08-14
  • 录用日期:  2025-08-25
  • 刊出日期:  2026-02-06

目录

    /

    返回文章
    返回