Analyse on seismic performance of complex underground space structure under rare earthquakes
-
摘要: 目前地下结构抗震设计仍以二维模型计算分析为主,但对于复杂地下空间结构,二维模型难以反映结构真实受力特点,计算存在一定误差。三维动力时程分析法能计算地震反应中各时刻结构的变形和内力状态,能较为真实地反映结构的动力特性。本文总结了三维非线性动力时程分析黏弹性边界条件、地震动参数的输入方法等主要建模过程及结构损伤评价指标,以雄安新区配套市政工程金融岛地下空间结构为例,采用GFE有限元分析软件建模,分析了金融岛地下空间罕遇地震(E3)作用下的抗震性能。结果显示,罕遇地震作用下结构的弹塑性层间位移角满足规范限值1/250要求,主体结构未出现大范围损伤,仅局部楼板开洞等薄弱部位竖向构件出现损伤,该分析方法可为类似工程抗震分析提供参考和借鉴。Abstract: The seismic design of underground structures is still dominated by two-dimensional model calculation, but for complex underground space structures, it is hard to reflect the real characteristics of the structure, and it may have certain errors in the calculation. The three-dimensional dynamic time history analysis method can calculate the deformation and internal force state of the structure at each time in seismic response, and provide a more realistic dynamic characteristic of the response structure. The key modeling processes, such as viscoelastic boundary conditions, the input of ground motion parameters method, and structural damage evaluation indicators, were summarized. Taking the underground space structure of the financial island supporting municipal engineering in Xiong’an New Area as an example, and the seismic performance of the underground space of the financial island under the action of a rare (E3) earthquake was analyzed by GFE finite element analysis software. The results show that the elastic-plastic interlayer displacement angle index of the structure under rare earthquake meets the requirements of the code limit of 1/250, and the main structure has not suffered extensive damage, only the vertical components in weak parts, such as local floor openings, are damaged. It provides a reference for similar engineering designs.
-
表 1 混凝土受压损伤等级
$ \Pi\mathrm{^{dc}} $ 受压损伤程度 ${d^ - }$ 裂缝发展 0级 无损坏 [0,0.1] 微裂缝 1级 轻微损坏 [0.1,0.2] 稳定裂缝发展期 2级 轻度损坏 [0.2,0.4] 不稳定裂缝发展期出现可见裂缝 3级 中度损坏 [0.4,0.6] 出现宏观斜裂缝 4级 比较严重损坏 [0.6,0.8] 宏观斜裂缝发展 5级 严重损坏 [0.8,1.0] 保留较小残余强度 表 2 钢材损伤等级划分
${\Pi ^{\text{p}}}$ 损害程度 $ {\gamma ^p}{\text{/}}{\varepsilon _{{\text{e0}}}} $ 塑性发展 0级 无损坏 ≤0 弹性段 1级 轻微损坏 (0,1] 屈服段Ⅰ 2级 轻度损坏 (1,3] 屈服段Ⅱ 3级 中度损坏 (3,6] 屈服段Ⅲ 4级 比较严重
损坏(6,12] 屈服段Ⅲ或强化段 5级 严重损坏 >12 强化段或缩颈段 表 3 抗震设防目标
地震影响 罕遇地震 整体结构 性能需求 Ⅱ 定性描述 轻度损坏;一般修理后可继续使用 位移角限值 1/250 结构构件 框架梁 轻度损坏、部分中度损坏;
抗剪、压弯及拉弯不屈服框架柱 轻微损坏;抗剪、压弯及拉弯不屈服 与土接触墙肢 轻微损坏;抗剪、压弯及拉弯不屈服 表 4 地层物理参数统计表
土层名称 动弹性参数(平均值) 弹性模量
E/MPa泊松比
v黏聚力
c/kPa内摩擦角
φ/(°)重度
γ/(kN·m−3)素填土 170.2 0.4 8 8 1.95 粉质黏土 246.1 0.4 34.2 28.7 1.97 粉细砂 145.4 0.43 0 28 2.00 粉土 50.7 0.4 31 29.9 2.09 粉质黏土 406.1 0.45 45.8 27.9 2.01 粉细砂 0.43 0 30 2.05 -
[1] 谢宏飞, 蔡海兵. 地铁地下车站抗震研究主要方法与现状[J]. 建井技术, 2023, 44(6): 85-90. (XIE H F, CAI H B. Main methods and status of seismic research on underground metro stations[J]. Mine Construction Technology, 2023, 44(6): 85-90. (in Chinese)XIE H F, CAI H B. Main methods and status of seismic research on underground metro stations[J]. Mine Construction Technology, 2023, 44(6): 85-90. (in Chinese) [2] 曾佳明, 朱忠义, 吕 辉, 等. 考虑土–结构相互作用的大跨度空间结构抗震研究进展[J]. 建筑科学与工程学报, 2024, 41(1): 69-82. (zENG J M, ZHU Z Y, LYU H, et al. Research progress on seismic resistance of large-span spatial structures considering soil-structure interaction[J]. Journal of Architecture and Civil Engineering, 2024, 41(1): 69-82. (in Chinese)zENG J M, ZHU Z Y, LYU H, et al. Research progress on seismic resistance of large-span spatial structures considering soil-structure interaction[J]. Journal of Architecture and Civil Engineering, 2024, 41(1): 69-82. (in Chinese) [3] 安军海, 陶连金, 李积栋, 等. 地下结构横断面抗震设计的等代平面框架法[J]. 现代隧道技术, 2016, 53(5): 43-50. (AN J H, TAO L J, LI J D, et al. Equivalent plane frame method for the aseismic design of the cross section of underground structures[J]. Modern Tunnelling Technology, 2016, 53(5): 43-50. (in Chinese)AN J H, TAO L J, LI J D, et al. Equivalent plane frame method for the aseismic design of the cross section of underground structures[J]. Modern Tunnelling Technology, 2016, 53(5): 43-50. (in Chinese) [4] 石 卫, 王 瑞, 王启耀. 地下结构抗震设计反应位移法的研究综述[J]. 科学技术与工程, 2024, 24(1): 61-71. (SHI W, WANG R, WANG Q Y. Research review of the response displacement method for aseismic design of underground structures[J]. Science Technology and Engineering, 2024, 24(1): 61-71. (in Chinese) doi: 10.12404/j.issn.1671-1815.2211368SHI W, WANG R, WANG Q Y. Research review of the response displacement method for aseismic design of underground structures[J]. Science Technology and Engineering, 2024, 24(1): 61-71. (in Chinese) doi: 10.12404/j.issn.1671-1815.2211368 [5] 彭有宝, 王 鑫. 轨道交通地下结构抗震设计相关反应加速度法分析[J]. 地震工程学报, 2017, 39(6): 1037-1045. (PENG Y B, WANG X. Analysis of the response acceleration method related to the seismic design of underground rail transit structures[J]. China Earthquake Engineering Journal, 2017, 39(6): 1037-1045. (in Chinese) doi: 10.3969/j.issn.1000-0844.2017.06.1037PENG Y B, WANG X. Analysis of the response acceleration method related to the seismic design of underground rail transit structures[J]. China Earthquake Engineering Journal, 2017, 39(6): 1037-1045. (in Chinese) doi: 10.3969/j.issn.1000-0844.2017.06.1037 [6] 中华人民共和国住房和城乡建设部. 城市轨道交通结构抗震设计规范: GB 50909—2014[S]. 北京: 中国标准出版社, 2014. (Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for seismic design of urban rail transit structures: GB 50909—2014[S]. Beijing: China Standard Press, 2014. (in Chinese)Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for seismic design of urban rail transit structures: GB 50909—2014[S]. Beijing: China Standard Press, 2014. (in Chinese) [7] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 地下结构抗震设计标准: GB/T 51336—2018[S]. 北京: 中国建筑工业出版社, 2018. (Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standard for seismic design of underground structures: GB/T 51336—2018[S]. Beijing: China Architecture & Building Press, 2018. (in Chinese)Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standard for seismic design of underground structures: GB/T 51336—2018[S]. Beijing: China Architecture & Building Press, 2018. (in Chinese) [8] 彭子健. 复杂断面地铁车站结构动力响应规律研究[D]. 重庆: 重庆交通大学, 2022. (PENG Z J. Study on Dynamic Response Law of subway station structure with complex section[D]. Chongqing: Chongqing Jiaotong University, 2022. (in Chinese)PENG Z J. Study on Dynamic Response Law of subway station structure with complex section[D]. Chongqing: Chongqing Jiaotong University, 2022. (in Chinese) [9] 赵 密. 黏弹性人工边界及其与透射人工边界的比较研究[D]. 北京: 北京工业大学, 2004. (ZHAO M. Study on the viscous-spring boundary and the transmitting boundary[D]. Beijing: Beijing University of Technology, 2004. (in Chinese)ZHAO M. Study on the viscous-spring boundary and the transmitting boundary[D]. Beijing: Beijing University of Technology, 2004. (in Chinese) [10] 刘晶波, 杜义欣, 闫秋实. 粘弹性人工边界及地震动输入在通用有限元软件中的实现[J]. 防灾减灾工程学报, 2007, 27(S1): 37-42. (LIU J B, DU Y X, YAN Q S. Implementation of viscoelastic artificial boundary and ground motion input in general finite element software[J]. Journal of Disaster Prevention and Mitigation Engineering, 2007, 27(S1): 37-42. (in Chinese)LIU J B, DU Y X, YAN Q S. Implementation of viscoelastic artificial boundary and ground motion input in general finite element software[J]. Journal of Disaster Prevention and Mitigation Engineering, 2007, 27(S1): 37-42. [11] 石 婷. 复杂土层条件下地铁车站的地震响应分析及抗震研究[D]. 北京: 北京交通大学, 2023. (SHI T. Seismic response analysis of subway station under complex soil layer and seismic research[D]. Beijing: Beijing Jiaotong University, 2023. (in Chinese)SHI T. Seismic response analysis of subway station under complex soil layer and seismic research[D]. Beijing: Beijing Jiaotong University, 2023. (in Chinese) [12] 柳锦春, 还 毅, 李建权. 人工边界及地震动输入在有限元软件中的实现[J]. 地下空间与工程学报, 2011, 7(S2): 1774-1779. (LIU J C, HUAN Y, LI J Q. Application of artificial boundary and seismic input in general finite element software[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(S2): 1774-1779. (in Chinese) doi: 10.3969/j.issn.1673-0836.2011.z2.044LIU J C, HUAN Y, LI J Q. Application of artificial boundary and seismic input in general finite element software[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(S2): 1774-1779. (in Chinese) doi: 10.3969/j.issn.1673-0836.2011.z2.044 [13] 陆喜欢. 地下结构抗震实用分析方法研究与改进[D]. 北京: 清华大学, 2022. (LU X H. Research and improvement of practical analysis method for seismic resistance of underground structures[D]. Beijing: Tsinghua University, 2022. (in Chinese)LU X H. Research and improvement of practical analysis method for seismic resistance of underground structures[D]. Beijing: Tsinghua University, 2022. (in Chinese) [14] 杜修力, 欧进萍. 建筑结构地震破坏评估模型[J]. 世界地震工程, 1991, 7(3): 52-58. (DU X L, OU J P. Earthquake damage assessment model of building structure[J]. World Earthquake Engineering, 1991, 7(3): 52-58. (in Chinese)DU X L, OU J P. Earthquake damage assessment model of building structure[J]. World Earthquake Engineering, 1991, 7(3): 52-58. [15] 曹胜涛, 李志山. 基于材料非线性的结构抗震性能评价方法[J]. 建筑结构, 2020, 50(7): 17-27. (CAO S T, LI Z S. Structural seismic performance evaluation method based on material nonlinearity[J]. Building Structure, 2020, 50(7): 17-27. (in Chinese)CAO S T, LI Z S. Structural seismic performance evaluation method based on material nonlinearity[J]. Building Structure, 2020, 50(7): 17-27. (in Chinese) [16] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 混凝土结构设计标准(2024年版): GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011. (Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese) [17] 孟 啸, 李宏远, 石少华. 超大型地下交通枢纽结构关键断面抗震性能分析[J]. 建筑结构, 2022, 52(S1): 820-825. (MENG X, LI H Y, SHI S H. Seismic performance analysis of key sections of super-large underground transportation junctions[J]. Building Structure, 2022, 52(S1): 820-825. (in Chinese)MENG X, LI H Y, SHI S H. Seismic performance analysis of key sections of super-large underground transportation junctions[J]. Building Structure, 2022, 52(S1): 820-825. (in Chinese) [18] BARDET J P, ICHII K, LIN C H. EERA-a computer program for equivalent-linear earthquake site response analyses of layered soil deposits[M]. Los Angeles: University of Southern California, 2000. -
下载: