留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HEPF流态固化轻质土耐久性能研究

谢天胜 郑志明 郝德军 王珺 于歆晨 刘亚珍 张昕毅

谢天胜, 郑志明, 郝德军, 王珺, 于歆晨, 刘亚珍, 张昕毅. HEPF流态固化轻质土耐久性能研究[J]. 岩土工程技术, 2025, 39(5): 766-774. doi: 10.20265/j.cnki.issn.1007-2993.2024-0399
引用本文: 谢天胜, 郑志明, 郝德军, 王珺, 于歆晨, 刘亚珍, 张昕毅. HEPF流态固化轻质土耐久性能研究[J]. 岩土工程技术, 2025, 39(5): 766-774. doi: 10.20265/j.cnki.issn.1007-2993.2024-0399
Xie Tiansheng, Zheng Zhiming, Hao Dejun, Wang Jun, Yu Xinchen, Liu Yazhen, Zhang Xinyi. Durability of HEPF fluid-solidified lightweight soil[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(5): 766-774. doi: 10.20265/j.cnki.issn.1007-2993.2024-0399
Citation: Xie Tiansheng, Zheng Zhiming, Hao Dejun, Wang Jun, Yu Xinchen, Liu Yazhen, Zhang Xinyi. Durability of HEPF fluid-solidified lightweight soil[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(5): 766-774. doi: 10.20265/j.cnki.issn.1007-2993.2024-0399

HEPF流态固化轻质土耐久性能研究

doi: 10.20265/j.cnki.issn.1007-2993.2024-0399
基金项目: 国家重点研发计划(2022YFB2602102)
详细信息
    作者简介:

    谢天胜,男,1992年生,硕士,工程师,主要从事公路工程项目建设管理。E-mail:972782312@qq.com

    通讯作者:

    王 珺,女,1997年生,博士。研究方向:绿色建筑材料。E-mail:wang.jun@mail.sdu.edu.cn

  • 中图分类号: U416.1

Durability of HEPF fluid-solidified lightweight soil

  • 摘要: 为进一步提高泡沫轻质土的吸能减震效果和工程安全性,制备了新型高弹聚合物纤维(Highly Elastic Polymers Fiber,简称HEPF)流态固化轻质土材料,并通过试验分析了其水稳定性、抗渗性、抗冻融性和疲劳加载特性。试验结果表明,掺入高弹聚合物和纤维的HEPF流态固化轻质土较普通泡沫轻质土在材料的水稳定性、抗水渗透性和抗冻性能方面表现出显著优势。当高弹聚合物掺量10%、纤维掺量0.2%时,材料的水稳定系数均达到0.98以上,渗水压力较对照组提升了50%~150%,抗冻性系数显著提高。此外,材料在疲劳加载试验中展现出良好的耐久性和抗裂性能,有效地延长了其使用寿命。研究结果验证了HEPF流态固化轻质土在工程应用中的优越性能,证明其在交通荷载循环振动等恶劣条件下,具有良好的耐久性和环境适应性。

     

  • 图  1  高弹聚合物颗粒

    图  2  聚丙烯纤维

    图  3  试件制备流程

    图  4  抗渗试验图

    图  5  疲劳加载试验图

    图  6  水稳定性系数随不同因素变化规律图

    图  7  渗水压力随高弹聚合物掺量变化规律图

    图  8  抗冻性系数随湿密度变化规律图

    图  9  试件位移变化随频率变化规律图

    图  10  试件位移变化随中位应力变化规律图

    图  11  试件位移变化随振幅变化规律图

    图  12  试件位移随加载次数变化规律图

    图  13  对照组及HEPF流态固化轻质土疲劳加载试验位移变化规律图

    图  14  对照组及HEPF流态固化轻质土疲劳加载试验试件裂缝情况图

    表  1  P.O 42.5水泥物理力学性能

    密度 /(kg∙m³)标准稠度/%凝结时间/min3 d抗压强度 /MPa3 d抗折强度 /MPa28 d抗压强度 /MPa28 d抗折强度 /MPa
    初凝终凝
    310028.517320121.26.954.310.1
    下载: 导出CSV

    表  2  水泥的化学成分及性能

    成分CaOSiO2Al2O3Fe2O3MgOSO3总碱量烧失量
    含量 /%64.321.64.733.682.590.30.632.89
    下载: 导出CSV

    表  3  高弹聚合物颗粒主要技术参数

    密度
    /(kg∙m³)
    加热
    减量 /%
    灰分
    /%
    含铁量
    /%
    纤维
    掺量/%
    筛余物
    /%
    750 0.62 8.75 0.029 0 0.014
    下载: 导出CSV

    表  4  聚丙烯纤维主要技术参数

    抗拉强度
    /MPa
    弹性模量
    /GPa
    拉伸
    极限/%
    纤维直径
    /μm
    比重 吸水
    抗低
    温性
    抗酸
    碱性
    导热
    >486 >4.8 >15 18~48 0.91
    下载: 导出CSV

    表  5  试验参数表

    试验 频率/Hz 中位应力
    /MPa
    振幅/% 次数
    频率试验 1, 3, 5 0.4 30 10000
    振幅试验 5 0.4 20, 30, 40 10000
    中位应力试验 5 0.2, 0.4, 0.6 30 10000
    次数试验 5 0.4 30 10000, 30000, 50000
    下载: 导出CSV

    表  6  两种工况下疲劳加载试验的位移变化量

    对照组 HEPF流态固化轻质土
    位移最小位移最大位移最小位移最大
    0.659%0.765%0.441%0.483%
    注:中位应力:0.4MPa ;频率:3Hz ;振幅:30% ;次数:10000次。
    下载: 导出CSV
  • [1] ZHANG H B, WANG J, WANG C, et al. Using foamed concrete layer to optimize the design of pavement and subgrade structures: from the perspectives economy and durability[J]. Arabian Journal for Science and Engineering, 2023, 48(10): 12859-12874. doi: 10.1007/s13369-023-07606-1
    [2] LIU M P, WANG J, WANG C, et al. Stress-solid materials-voids interaction of foamed concrete in isotropic compression[J]. Construction and Building Materials, 2022, 358: 129468. doi: 10.1016/j.conbuildmat.2022.129468
    [3] 牛金龙, 施卫星. 房屋建筑顶层采用橡胶支承的消能减震[J]. 建筑结构, 2002, 32(6): 63-65. (NIU J L, SHI W X. Reduction vibration with rubber shock absorber under top storey in the building[J]. Building Structure, 2002, 32(6): 63-65. (in Chinese)

    NIU J L, SHI W X. Reduction vibration with rubber shock absorber under top storey in the building[J]. Building Structure, 2002, 32(6): 63-65. (in Chinese)
    [4] SHI M H, YIN G S, ZHANG W Q, et al. Study on key parameters and design methods for the density-mix proportion of rubber-foamed concrete[J]. Buildings, 2024, 14(8): 2468. doi: 10.3390/buildings14082468
    [5] DAMIANI R M, SONG Y, LANGE D A. Effect of waste rubber inclusion on the microstructure and mechanical performance of low-density foam concrete[J]. Journal of Materials in Civil Engineering, 2024, 36(7): 04024168. doi: 10.1061/JMCEE7.MTENG-16750
    [6] WANG R, GAO P W, TIAN M H, et al. Experimental study on mechanical and waterproof performance of lightweight foamed concrete mixed with crumb rubber[J]. Construction and Building Materials, 2019, 209: 655-664. doi: 10.1016/j.conbuildmat.2019.03.157
    [7] BENAZZOUK A, DOUZANE O, MEZREB K, et al. Physico-mechanical properties of aerated cement composites containing shredded rubber waste[J]. Cement and Concrete Composites, 2006, 28(7): 650-657. doi: 10.1016/j.cemconcomp.2006.05.006
    [8] 王亚威. 轻质混凝土耐久性及其提升技术试验研究[D]. 成都: 西南交通大学, 2017. (WANG Y W. Experimental study on durability and improvement techniques for the lightweight concrete[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)

    WANG Y W. Experimental study on durability and improvement techniques for the lightweight concrete[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
    [9] BATOOL F, BINDIGANAVILE V. Evaluation of thermal conductivity of cement-based foam reinforced with polypropylene fibers[J]. Materials and Structures, 2020, 53(1): 13. doi: 10.1617/s11527-020-1445-7
    [10] JAFFAL A N, HILAL A A, MAHMOUD A S, et al. Investigating the possibility of producing fiber reinforced foamed concrete for structural applications[J]. AIP Conference Proceedings, 2024, 3009(1): 030088.
    [11] BAYRAKTAR O Y, KAPLAN G, GENCEL O, et al. Physico-mechanical, durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag[J]. Construction and Building Materials, 2021, 288: 123128. doi: 10.1016/j.conbuildmat.2021.123128
    [12] KAZMI S M S, MUNIR M J, WU Y F, et al. Effect of different aggregate treatment techniques on the freeze-thaw and sulfate resistance of recycled aggregate concrete[J]. Cold Regions Science and Technology, 2020, 178: 103126. doi: 10.1016/j.coldregions.2020.103126
    [13] 王立新, 范飞飞, 汪 珂, 等. 地铁车站不同减震层的减震机理及性能分析[J]. 铁道标准设计, 2022, 66(5): 131-139. (WANG L X, FAN F F, WANG K, et al. Damping mechanism and performance analysis of different shock absorption layers in metro station[J]. Railway Standard Design, 2022, 66(5): 131-139. (in Chinese)

    WANG L X, FAN F F, WANG K, et al. Damping mechanism and performance analysis of different shock absorption layers in metro station[J]. Railway Standard Design, 2022, 66(5): 131-139. (in Chinese)
    [14] ELTAYEB E, MA X, ZHUGE Y, et al. Influence of rubber particles on the properties of foam concrete[J]. Journal of Building Engineering, 2020, 30: 101217. doi: 10.1016/j.jobe.2020.101217
    [15] 米天煜. 废胶粉泡沫混凝土设计及疲劳性能研究[D]. 赣州: 江西理工大学, 2023. (MI T Y. Design and fatigue properties of waste rubber powder foamconcrete[D]. Ganzhou: Jiangxi University of Science and Technology, 2023. (in Chinese)

    MI T Y. Design and fatigue properties of waste rubber powder foamconcrete[D]. Ganzhou: Jiangxi University of Science and Technology, 2023. (in Chinese)
    [16] 吴 昊, 龙广成, 杨 恺, 等. PE纤维与细橡胶颗粒对泡沫混凝土弯曲韧性的影响[J]. 建筑材料学报, 2024, 27(3): 206-214. (WU H, LONG G C, YANG K, et al. Effects of PE fiber and fine rubber particles on flexural toughness of foam concrete[J]. Journal of Building Materials, 2024, 27(3): 206-214. (in Chinese) doi: 10.3969/j.issn.1007-9629.2024.03.003

    WU H, LONG G C, YANG K, et al. Effects of PE fiber and fine rubber particles on flexural toughness of foam concrete[J]. Journal of Building Materials, 2024, 27(3): 206-214. (in Chinese) doi: 10.3969/j.issn.1007-9629.2024.03.003
    [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 蒸压加气混凝土性能试验方法: GB/T 11969—2008[S]. 北京: 中国标准出版社, 2009. (General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. Test methods of autoclaved aerated concrete: GB/T 11969—2008[S]. Beijing: China Standard Press, 2009. (in Chinese)

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. Test methods of autoclaved aerated concrete: GB/T 11969—2008[S]. Beijing: China Standard Press, 2009. (in Chinese)
    [18] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2024[S]. 北京: 中国建筑工业出版社. (Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2024[S]. Beijing: China Architecture & Building Press. (in Chinese)

    Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2024[S]. Beijing: China Architecture & Building Press. (in Chinese)
    [19] 姚义胜. 基于泡沫轻质土复合路基的半刚性路面结构优化及动力响应研究[D]. 济南: 山东大学, 2021. (YAO Y S. Semi-rigid pavement structure optimization and dynamic response study based on foam lightweight soil composite subgrade[D]. Jinan: Shandong University, 2021. (in Chinese)

    YAO Y S. Semi-rigid pavement structure optimization and dynamic response study based on foam lightweight soil composite subgrade[D]. Jinan: Shandong University, 2021. (in Chinese)
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-31
  • 修回日期:  2024-11-22
  • 录用日期:  2025-01-02
  • 刊出日期:  2025-10-10

目录

    /

    返回文章
    返回