Wall stabilization and collapse prevention technology for geothermal drilling in shale formations in Zhuhu area
-
摘要: 朱湖地区某地热工程钻井至泥页岩地层时,由于钻井液与地层的活度差较大,钻井液无法有效阻止压力传递且封堵性差,导致井壁发生较为严重的坍塌。为解决这一问题,研制出一种防塌钻井液,该钻井液由盐水+4%膨润土+1%PAM+2%STQ+1% SPKY+1%多元封堵剂(2%浓度ZT-1+3%浓度GX-1+2%浓度NQ)+1%胺基聚醇组成,流变性合理,能够有效抑制泥页岩的水化膨胀分散性,可以有效阻止上游压力传递给下游,封堵性能良好,同时还具备很好的润滑工作性能和抗钻屑污染能力。现场应用表明,使用该防塌钻井液后未再发生严重垮塌失稳现象,起到了较好的稳壁防塌效果。Abstract: There is a significant activity difference between the geothermal drilling shale formation in the Zhuhu area and the on-site drilling fluid. The on-site drilling fluid exhibits moderate dispersibility and fails to effectively inhibit pressure transmission, resulting in poor sealing performance and serious collapse of the drilling wellbore. To solve this problem, an optimization of the on-site drilling fluid system was proposed, and an anti-collapsing drilling fluid was prepared. The drilling fluid is composed of saline water + 4% bentonite + 1% PAM+2% STQ + 1% SPKY + 1% multi-element sealing agent (2% concentration ZT-1 + 3% concentration GX-1 + 2% concentration NQ) + 1% amino polyol, which has reasonable rheological properties and can effectively inhibit the hydration expansion and dispersion of shale. It can effectively inhibit the transmission of upstream pressure to downstream, with good plugging performance, as well as good lubrication performance and resistance to drilling debris pollution. Through on-site application, it has been proven that the use of this anti-collapsing drilling fluid has prevented serious collapse and instability. At the same drilling depth, the drilling construction period has been saved 11 days, and it has achieved good wall stabilization and anti-collapsing effects.
-
表 1 防塌钻井液体系添加剂掺量
配方编号 膨润土/% PAM/% STQ/% SPKY/% 多元封堵剂/% 抑制剂/% 黏度/(mPa∙s) API滤失量/mL 1 3 1 2 1 1 1 30 5.4 2 3 2 2 2 1 1 32 3.9 3 3 1 3 1 1 1 44 6.0 4 3 2 3 2 1 1 41 5.2 5 4 1 2 1 1 1 33 2.8 6 4 2 2 2 1 1 45 7.0 7 4 1 3 1 1 1 44 3.7 8 4 2 3 2 1 1 52 4.4 表 2 两种钻井液性能对比
性能 指标 单位 现场钻井液 优化防塌钻井液 流变性 黏度 mPa·s 30 33 流变性 FLAPI mL 4.5 2.8 抑制性 滚动回收率 % 65.5 92.3 抑制性 5 h膨胀率 % 3.63 2.0 封堵性 FLHTHP mL 7.5 5.0 封堵性 后端压力 MPa 2.8 0.7 润滑性 润滑系数 0.0850 0.0890 润滑性 粘滞系数 0.0578 0.0715 -
[1] 王瑞鹏, 赵伟锋, 杨舒为, 等. 综合物探在冀东北部山区地热资源勘查中的应用[J]. 矿产勘查, 2024, 15(5): 818-826. (WANG R P, ZHAO W F, YANG S W, et al. Application of comprehensive geophysical exploration in geothermal resources exploration in northern mountainous area of eastern Hebei Province[J]. Mineral Exploration, 2024, 15(5): 818-826. (in Chinese)WANG R P, ZHAO W F, YANG S W, et al. Application of comprehensive geophysical exploration in geothermal resources exploration in northern mountainous area of eastern Hebei Province[J]. Mineral Exploration, 2024, 15(5): 818-826. (in Chinese) [2] 张召峰. 肯尼亚高温地热钻井技术在中国干热岩资源开发中的应用前景[J]. 油气藏评价与开发, 2022, 12(6): 833-842. (ZHANG Z F. Application prospects of Kenya's high-temperature geothermal resources drilling technology in China's dry hot rock resources[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 833-842. (in Chinese)ZHANG Z F. Application prospects of Kenya's high-temperature geothermal resources drilling technology in China's dry hot rock resources[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 833-842. (in Chinese) [3] 钱开铸, 林 叶, 常铁森. 北京国子监JR-181地热井施工工艺及开发评价[J]. 岩土工程技术, 2017, 31(1): 45-48. (QIAN K Z, LIN Y, CHANG T S. Drilling technology and exploration evaluation in the geothermal well construction in the Guozijian Region, Beijing[J]. Geotechnical Engineering Technique, 2017, 31(1): 45-48. (in Chinese) doi: 10.3969/j.issn.1007-2993.2017.01.011QIAN K Z, LIN Y, CHANG T S. Drilling technology and exploration evaluation in the geothermal well construction in the Guozijian Region, Beijing[J]. Geotechnical Engineering Technique, 2017, 31(1): 45-48. (in Chinese) doi: 10.3969/j.issn.1007-2993.2017.01.011 [4] 吴晓红, 李云峰, 余小龙, 等. 南堡沙河街组硬脆性泥页岩地层漏失压力预测方法[J]. 科学技术与工程, 2024, 24(1): 189-194. (WU X H, LI Y F, YU X L, et al. Prediction method of loss pressure of hard brittle shale in Shahejie formation, Nanpu[J]. Science Technology and Engineering, 2024, 24(1): 189-194. (in Chinese) doi: 10.12404/j.issn.1671-1815.2301652WU X H, LI Y F, YU X L, et al. Prediction method of loss pressure of hard brittle shale in Shahejie formation, Nanpu[J]. Science Technology and Engineering, 2024, 24(1): 189-194. (in Chinese) doi: 10.12404/j.issn.1671-1815.2301652 [5] 付毓伟, 罗 兵, 叶政蔚, 等. 水基钻井液用泥页岩抑制剂研究探讨[J]. 石化技术, 2023, 30(11): 177-179. (FU Y W, LUO B, YE Z W, et al. Research and discussion on shale inhibitors for water-based drilling fluids[J]. Petrochemical Industry Technology, 2023, 30(11): 177-179. (in Chinese)FU Y W, LUO B, YE Z W, et al. Research and discussion on shale inhibitors for water-based drilling fluids[J]. Petrochemical Industry Technology, 2023, 30(11): 177-179. (in Chinese) [6] 王苏南, 狄明利, 马积贺, 等. 南海东部某油田古近系复杂煤层防塌钻井液技术研究[J]. 能源化工, 2023, 44(4): 53-57. (WANG S N, DI M L, MA J H, et al. Research on anti-collapse drilling fluid technology of Paleogene complex coal seam in an oilfield of the eastern South China Sea[J]. Energy Chemical Industry, 2023, 44(4): 53-57. (in Chinese) doi: 10.3969/j.issn.1006-7906.2023.04.011WANG S N, DI M L, MA J H, et al. Research on anti-collapse drilling fluid technology of Paleogene complex coal seam in an oilfield of the eastern South China Sea[J]. Energy Chemical Industry, 2023, 44(4): 53-57. (in Chinese) doi: 10.3969/j.issn.1006-7906.2023.04.011 [7] 孙 舜. 钻井完井工程中的井眼壁稳定性与防塌措施研究[J]. 石化技术, 2024, 31(1): 187-189. (SUN S. Research on wellbore wall stability and anti collapse measures in drilling and completion engineering[J]. Petrochemical Industry Technology, 2024, 31(1): 187-189. (in Chinese)SUN S. Research on wellbore wall stability and anti collapse measures in drilling and completion engineering[J]. Petrochemical Industry Technology, 2024, 31(1): 187-189. (in Chinese) [8] 王国辉, 苏 乐, 赵燕博. 强封堵防塌型水基钻井液体系室内制备及其应用[J]. 当代化工, 2024, 53(5): 1162-1165,1169. (WANG G H, SU L, ZHAO Y B. Preparation and application of strong sealing and anti collapse water-based drilling fluid system[J]. Contemporary Chemical Industry, 2024, 53(5): 1162-1165,1169. (in Chinese) doi: 10.3969/j.issn.1671-0460.2024.05.032WANG G H, SU L, ZHAO Y B. Preparation and application of strong sealing and anti collapse water-based drilling fluid system[J]. Contemporary Chemical Industry, 2024, 53(5): 1162-1165,1169. (in Chinese) doi: 10.3969/j.issn.1671-0460.2024.05.032 [9] 姚宾科, 刘长青, 李志勇, 等. 适用于浅层覆盖层的防塌减阻聚合物钻井液的试验研究及现场应用[J]. 工程勘察, 2018, 46(10): 25-29. (YAO B K, LIU C Q, LI Z Y, et al. Experimental study and field application of the anti-collapse and drag polymer drilling fluid applied to the shallow overburden[J]. Geotechnical Investigation & Surveying, 2018, 46(10): 25-29. (in Chinese)YAO B K, LIU C Q, LI Z Y, et al. Experimental study and field application of the anti-collapse and drag polymer drilling fluid applied to the shallow overburden[J]. Geotechnical Investigation & Surveying, 2018, 46(10): 25-29. (in Chinese) [10] 任小庆, 高小荣, 孙彩霞, 等. 抗高温泡沫钻井液体系评价研究[J]. 地质与勘探, 2021, 57(2): 423-429. (REN X Q, GAO X R, SUN C X, et al. Evaluation of high temperature restistant foam drilling fluid system[J]. Geology and Exploration, 2021, 57(2): 423-429. (in Chinese) doi: 10.12134/j.dzykt.2021.02.017REN X Q, GAO X R, SUN C X, et al. Evaluation of high temperature restistant foam drilling fluid system[J]. Geology and Exploration, 2021, 57(2): 423-429. (in Chinese) doi: 10.12134/j.dzykt.2021.02.017 [11] 宋先知, 郭 勇, 向冬梅, 等. 呼图壁背斜水基钻井液井壁失稳机理多场耦合分析[J]. 新疆石油天然气, 2023, 19(4): 1-9. (SONG X Z, GUO Y, XIANG D M, et al. Multi-field coupling analysis of wellbore instability in Hutubi anticline while using water-based drilling fluid[J]. Xinjiang Oil & Gas, 2023, 19(4): 1-9. (in Chinese) doi: 10.12388/j.issn.1673-2677.2023.04.001SONG X Z, GUO Y, XIANG D M, et al. Multi-field coupling analysis of wellbore instability in Hutubi anticline while using water-based drilling fluid[J]. Xinjiang Oil & Gas, 2023, 19(4): 1-9. (in Chinese) doi: 10.12388/j.issn.1673-2677.2023.04.001 [12] 邱春阳, 马 勇, 李 萍, 等. 聚胺复合盐润滑防塌钻井液在樊斜166大位移井的应用[J]. 天然气勘探与开发, 2024, 47(3): 63-69. (QIU C Y, MA Y, LI P, et al. Polyamine composite-salt drilling fluid with lubrication and anti-collapse performance and its application to extended-reach Fanxie-166 well[J]. Natural Gas Exploration and Development, 2024, 47(3): 63-69. (in Chinese) doi: 10.12055/gaskk.issn.1673-3177.2024.03.007QIU C Y, MA Y, LI P, et al. Polyamine composite-salt drilling fluid with lubrication and anti-collapse performance and its application to extended-reach Fanxie-166 well[J]. Natural Gas Exploration and Development, 2024, 47(3): 63-69. (in Chinese) doi: 10.12055/gaskk.issn.1673-3177.2024.03.007 [13] XU X F, CHEN C L, ZHOU Y, et al. Study of the wellbore instability mechanism of shale in the Jidong oilfield under the action of fluid[J]. Energies, 2023, 16(7): 2989. [14] 邓 媛, 何世明, 邓祥华, 等. 力化耦合作用下的层理性页岩气水平井井壁失稳研究[J]. 石油钻探技术, 2020, 48(1): 26-33. (DENG Y, HE S M, DENG X H, et al. Study on wellbore instability of bedded shale gas horizontal wells under chemo-mechanical coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26-33. (in Chinese)DENG Y, HE S M, DENG X H, et al. Study on wellbore instability of bedded shale gas horizontal wells under chemo-mechanical coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26-33. (in Chinese) [15] LI S B, LIANG K, WANG C H, et al. Study of wellbore instability and collapse mechanism for a layered continental shale oil horizontal well[J]. Energies, 2022, 15(13): 4538. [16] 崔红梅, 祝凤蕊, 尹 玲, 等. PAC-P(AM-BA)杂化高分子絮凝剂制备及絮凝效能评价[J]. 高校化学工程学报, 2024, 38(2): 286-293. (CUI H M, ZHU F R, YIN L, et al. Preparation and flocculation efficiency evaluation of a PAC-P(AM-BA)hybrid polymer flocculant[J]. Journal of Chemical Engineering of Chinese Universities, 2024, 38(2): 286-293. (in Chinese) doi: 10.3969/j.issn.1003-9015.2024.02.013CUI H M, ZHU F R, YIN L, et al. Preparation and flocculation efficiency evaluation of a PAC-P(AM-BA)hybrid polymer flocculant[J]. Journal of Chemical Engineering of Chinese Universities, 2024, 38(2): 286-293. (in Chinese) doi: 10.3969/j.issn.1003-9015.2024.02.013 [17] WANG Q S, WANG W Y, ZHANG K J, et al. Molecular simulation of polyacrylamide types on flocculation performance in oily wastewater[J]. Chemical Physics Letters, 2025, 867: 142023. [18] LEOWATTANA W, LEOWATTANA P, LEOWATTANA T. Systemic treatment for advanced pancreatic cancer[J]. World Journal of Gastrointestinal Oncology, 2023, 15(10): 1691-1705. [19] 张 勤, 王清臣, 王伟良, 等. 钻井液用耐温抗盐共聚物增黏剂的制备及性能评价[C]//2023油气田勘探与开发国际会议论文集Ⅰ. 武汉: 中国地质大学(武汉), 西安石油大学, 陕西省石油学会, 2023: 269-276. (ZHANG Q, WANG Q C, WANG W L, et al. Preparation and performance evaluation of temperature and salt resistant copolymer as drilling fluid viscosifier[C]//Proceedings of 2023 International Conference on Oil and Gas Field Exploration and Development I. Wuhan: China University of Geosciences (Wuhan), Xi’an University of Petroleum, Shaanxi Petroleum Society, 2023: 269-276. (in Chinese)ZHANG Q, WANG Q C, WANG W L, et al. Preparation and performance evaluation of temperature and salt resistant copolymer as drilling fluid viscosifier[C]//Proceedings of 2023 International Conference on Oil and Gas Field Exploration and Development I. Wuhan: China University of Geosciences (Wuhan), Xi’an University of Petroleum, Shaanxi Petroleum Society, 2023: 269-276. (in Chinese) [20] 唐 雷, 乔东宇, 王新东, 等. 固井水泥浆共聚物类耐高温降失水剂的制备及其机理探究[J]. 石油化工, 2024, 53(7): 1012-1019. (TANG L, QIAO D Y, WANG X D, et al. Preparation and mechanism of high-temperature-resistant fluid loss additive of copolymer type for oil well cement[J]. Petrochemical Technology, 2024, 53(7): 1012-1019. (in Chinese) doi: 10.3969/j.issn.1000-8144.2024.07.015TANG L, QIAO D Y, WANG X D, et al. Preparation and mechanism of high-temperature-resistant fluid loss additive of copolymer type for oil well cement[J]. Petrochemical Technology, 2024, 53(7): 1012-1019. (in Chinese) doi: 10.3969/j.issn.1000-8144.2024.07.015 -
下载: