Research progress on the application of anti-slide pile structure damage and reinforcement technology
-
摘要: 由于超载服役、材料老化、环境侵蚀等原因,抗滑桩结构可能会受损、失效。目前针对受损抗滑桩原位补强加固技术的研究和应用成果较少,亟待研发。通过总结现有研究和应用案例,对抗滑桩结构受力及损伤特征进行了剖析,归纳总结了抗滑桩的承载特性和损伤模式。结合实际工程情况对抗滑桩补强方法进行了系统总结,归纳了数值模拟方法在抗滑桩研究领域的应用情况,对采用数值模拟方法进行抗滑桩原位补强加固模拟的可行性进行了分析。研究成果表明:桩身注浆+植筋和扩大桩径是较为可靠的原位补强技术,数值分析方法可有效模拟受损抗滑桩原位补强过程。研究成果可为抗滑桩原位补强数值模拟研究与补强技术研发提供参考。Abstract: Due to overloaded service, material aging, environmental erosion, and other reasons, anti-slide pile structures may experience failure. Currently, there is limited research and application of in-situ reinforcement techniques for damaged anti-slide piles, and the development of new reinforcement technologies is urgently needed. This paper analyzes the stress and damage characteristics of anti-slide pile structures by summarizing existing research and application cases, and generalizes the load-bearing characteristics and damage modes of anti-slide piles. A systematic summary of the reinforcement methods for anti-slide piles was conducted in light of actual engineering conditions. The application of numerical simulation methods in the field of anti-slide pile research was summarized, and the feasibility of using numerical simulation methods for in-situ reinforcement and stabilization of anti-slide piles was analyzed. The research findings indicate that grouting within the pile body combined with rebar planting and increasing the pile diameter, are reliable in-situ reinforcement techniques. Numerical analysis methods can effectively simulate the in-situ reinforcement process of damaged anti-slide piles. These conclusions offer guidance for the numerical simulation research of in-situ reinforcement for damaged anti-slide piles and provide a reference for the development of in-situ reinforcement technologies.
-
表 1 抗滑桩损伤模式
结构形式 损伤原因 损伤模式 单桩结构 桩身强度不足 桩体剪切破坏或弯曲破坏 桩体推歪或推倒 桩侧土体承载力不足 桩间滑体流出 桩后土体越顶 锚索抗滑桩结构 滑坡推力和桩体抗力
共同作用导致桩体塑性铰破坏 锚杆承载力不足 锚杆失效 土体性质导致 桩周土体的塑性失稳破坏 表 2 抗滑桩理论补强方法
补强方法 技术方法 加固效果评价 桩身钻孔注浆加固 在桩身缺陷处钻孔利用压力进行高压注浆,使浆液填充缺陷,提高桩身强度,起到粘合、封闭和补强的作用 可灌性好、对内部钢筋扰动小、安全性高,修复效果较好。但需要设备条件,一些特殊地形无法施工,且注浆效果受桩身裂缝大小、分布以及浆液类型影响,对严重断裂的桩体效果有限 钢花管注浆加固 在桩身打孔注浆,填充裂缝和孔隙,提高桩身强度和稳定性 能对桩身裂缝进行有效填充,适用于各种地形。但需要预先钻孔,施工难度较大,材料成本较高,对抗剪强度提升有限 预应力锚索加固 在抗滑桩的适当位置安装预应力锚索,通过施加预应力提高桩身抗拉能力和整体稳定性 能显著提高抗滑桩的抗拉强度,有效限制桩顶位移及桩身变形,安全性高,适用于大位移和严重断裂的桩体。但对抗剪强度提升有限,需要预埋锚索,施工难度较大 钢筋网加固 由直径较小的钢筋组成,安装在抗滑桩的表面,增强桩体抗剪和抗裂能力,提高桩身整体性 方法施工简单,成本较低,对桩体损伤程度要求不高,但加固效果有限,对桩体裂缝和断裂的修复作用较小 植筋加固 通过植入钢筋和灌注锚固剂提高桩体的稳定性和抗滑能力 有效增强抗拉强度,但加固效果受桩身裂缝大小和分布影响,对抗剪强度提升及严重断裂的桩体效果有限 增设支挡结构 在抗滑桩周围增设挡墙或支撑结构 能有效分分担滑坡推力,提高整体稳定性,施工复杂,成本较高 扩大桩径 在适当位置通过钻孔或切割等方法扩大桩的直径,同时对桩身进行修复,提高桩体的整体强度和稳定性 有效提升抗滑桩的抗剪和承载能力,方法施工简单,安全可靠,适用于各种地形,但材料用量较大,成本相对较高。对抗拉强度提升有限 接桩法[32] 由于设计要求或地质条件的变化,在桩顶以上或以下接长新桩,提高桩体长度及抗滑能力 提高桩体稳定性,但施工复杂,成本较高,对桩体损伤程度有一定要求 -
[1] KIM J K, LU S, MAI Y K. Interfacial debonding and fibre pull-out stresses: part IV influence of interface layer on the stress transfer[J]. Journal of Materials Science, 1994, 29(2): 554-561. doi: 10.1007/BF01162521 [2] 赵 军, 刘静德, 梁志荣. 多排抗滑桩在大型滑坡治理中的工程应用研究[J]. 建筑科学, 2020, 36(S1): 156-161. (ZHAO J, LIU J D, LIANG Z R. Application of multi-row anti-sliding piles for a large landslide treatment[J]. Building Science, 2020, 36(S1): 156-161. (in Chinese)ZHAO J, LIU J D, LIANG Z R. Application of multi-row anti-sliding piles for a large landslide treatment[J]. Building Science, 2020, 36(S1): 156-161. (in Chinese) [3] HU X L, ZHOU C, XU C, et al. Model tests of the response of landslide-stabilizing piles to piles with different stiffness[J]. Landslides, 2019, 16(11): 2187-2200. doi: 10.1007/s10346-019-01233-4 [4] 渠孟飞, 王 珏, 朱 磊, 等. 基于多源数据分析的三峡库区抗滑工程优化与比选[J]. 科学技术与工程, 2022, 22(29): 12754-12763. (QU M F, WANG J, ZHU L, et al. Optimization and comparison of anti-sliding projects in the three gorges reservoir area based on multi-source data analysis[J]. Science Technology and Engineering, 2022, 22(29): 12754-12763. (in Chinese) doi: 10.3969/j.issn.1671-1815.2022.29.007QU M F, WANG J, ZHU L, et al. Optimization and comparison of anti-sliding projects in the three gorges reservoir area based on multi-source data analysis[J]. Science Technology and Engineering, 2022, 22(29): 12754-12763. (in Chinese) doi: 10.3969/j.issn.1671-1815.2022.29.007 [5] 邓明园, 杨 泉, 肖世国, 等. 高路堤承台式抗滑桩力学行为的模型试验[J]. 应用力学学报, 2025, 42(1): 182-193. (DENG M Y, YANG Q, XIAO S G, et al. Laboratory model test on mechanical behaviors of stabilizing pile with rigid platform used to retain high embankments[J]. Chinese Journal of Applied Mechanics, 2025, 42(1): 182-193. (in Chinese) doi: 10.11776/j.issn.1000-4939.2025.01.020DENG M Y, YANG Q, XIAO S G, et al. Laboratory model test on mechanical behaviors of stabilizing pile with rigid platform used to retain high embankments[J]. Chinese Journal of Applied Mechanics, 2025, 42(1): 182-193. (in Chinese) doi: 10.11776/j.issn.1000-4939.2025.01.020 [6] 祝廷尉, 胡新丽, 徐 聪, 等. 嵌岩桩抗滑特性的物理模型试验研究[J]. 岩土力学, 2014, 35(S1): 165-172. (ZHU T W, HU X L, XU C, et al. Physical model test research on anti-sliding characteristics of rock-socketed pile[J]. Rock and Soil Mechanics, 2014, 35(S1): 165-172. (in Chinese)ZHU T W, HU X L, XU C, et al. Physical model test research on anti-sliding characteristics of rock-socketed pile[J]. Rock and Soil Mechanics, 2014, 35(S1): 165-172. (in Chinese) [7] 匡 义. 抗滑桩设计参数对边坡加固效应的影响[J]. 科技传播, 2012, 4(13): 124, 73. (KUANG Y. The impact of anti-slide pile design parameters on slope reinforcement effects[J]. Science and Technology Communication, 2012, 4(13): 124, 73. (in Chinese)KUANG Y. The impact of anti-slide pile design parameters on slope reinforcement effects[J]. Science and Technology Communication, 2012, 4(13): 124, 73. (in Chinese) [8] YANG S K, REN X H, ZHANG J X. Study on embedded length of piles for slope reinforced with one row of piles[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2011, 3(2): 167-178. doi: 10.3724/SP.J.1235.2011.00167 [9] 任青阳, 赵梦园, 谢忠伟, 等. 抗滑桩应变特征与内力非线性研究[J]. 水文地质工程地质, 2021, 48(2): 114-124. (REN Q Y, ZHAO M Y, XIE Z W, et al. A study of the strain characteristics and internal force nonlinearity of anti-slide pile[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 114-124. (in Chinese)REN Q Y, ZHAO M Y, XIE Z W, et al. A study of the strain characteristics and internal force nonlinearity of anti-slide pile[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 114-124. (in Chinese) [10] 侯小强, 王新飞, 贾洪璐, 等. 渐进式滑坡锚索抗滑桩预应力张拉值计算[J]. 工程科学与技术, 2024, 56(1): 138-147. (HOU X Q, WANG X F, JIA H L, et al. Calculation of the prestressed tension value of the progressive landslide anchor cable[J]. Advanced Engineering Sciences, 2024, 56(1): 138-147. (in Chinese)HOU X Q, WANG X F, JIA H L, et al. Calculation of the prestressed tension value of the progressive landslide anchor cable[J]. Advanced Engineering Sciences, 2024, 56(1): 138-147. (in Chinese) [11] 王贵华. 软硬相间地层条件下锚索抗滑桩与滑坡相互作用机理及优化研究[D]. 武汉: 中国地质大学, 2022. (WANG G H. Interaction mechanism and optimization design for anchored slide-resistant piles reinforced landslides with weak-hard interbedded bedrock[D]. Wuhan: China University of Geosciences, 2022. (in Chinese)WANG G H. Interaction mechanism and optimization design for anchored slide-resistant piles reinforced landslides with weak-hard interbedded bedrock[D]. Wuhan: China University of Geosciences, 2022. (in Chinese) [12] 肖 燃. 抗滑桩震损破坏特征分析及修复加固方法研究[D]. 成都: 成都理工大学, 2015. (XIAO R. Analysis of characteristics of earthquake damage of anti-slide pile damage and repair reinforcement method[D]. Chengdu: Chengdu University of Technology, 2015. (in Chinese)XIAO R. Analysis of characteristics of earthquake damage of anti-slide pile damage and repair reinforcement method[D]. Chengdu: Chengdu University of Technology, 2015. (in Chinese) [13] 汪 源, 谢 强, 张建华. 双排抗滑桩布设方式对推力分配的影响[J]. 重庆大学学报, 2023, 46(8): 78-87. (WANG Y, XIE Q, ZHANG J H. Effect of double-row anti-slide piles on thrust distribution[J]. Journal of Chongqing University, 2023, 46(8): 78-87. (in Chinese) doi: 10.11835/j.issn.1000-582X.2023.08.008WANG Y, XIE Q, ZHANG J H. Effect of double-row anti-slide piles on thrust distribution[J]. Journal of Chongqing University, 2023, 46(8): 78-87. (in Chinese) doi: 10.11835/j.issn.1000-582X.2023.08.008 [14] 刘东子. 水库滑坡–抗滑桩体系失稳机理物理模型试验研究[D]. 武汉: 中国地质大学, 2023. (LIU D Z. Physical model test study of failure mechanisms in a reservoir landslide-pile system[D]. Wuhan: China University of Geosciences, 2023. (in Chinese)LIU D Z. Physical model test study of failure mechanisms in a reservoir landslide-pile system[D]. Wuhan: China University of Geosciences, 2023. (in Chinese) [15] 刘耿仁, 田建雄. 某顺层边坡锚索抗滑桩失效变形分析[J]. 公路, 2021, 66(5): 93-100. (LIU G R, TIAN J X. Analysis of the failure deformation of anchor cables in a bedding slope with anti-slide piles[J]. Highway, 2021, 66(5): 93-100. (in Chinese)LIU G R, TIAN J X. Analysis of the failure deformation of anchor cables in a bedding slope with anti-slide piles[J]. Highway, 2021, 66(5): 93-100. (in Chinese) [16] 郑章清, 林 星. 抗滑桩失效原因分析[J]. 铁道标准设计, 2001, 21(7): 41-42. (ZHENG Z Q, LIN X. Analysis of the failure causes of anti-slide piles[J]. Railway Standard Design, 2001, 21(7): 41-42. (in Chinese)ZHENG Z Q, LIN X. Analysis of the failure causes of anti-slide piles[J]. Railway Standard Design, 2001, 21(7): 41-42. (in Chinese) [17] 熊维林. 抗滑桩桩–土作用机制及失效模式研究[D]. 成都: 西南交通大学, 2022. (XIONG W L. Research on pile-soil interaction mechanism and failure mode of anti-slide piles[D]. Chengdu: Southwest Jiaotong University, 2022. (in Chinese)XIONG W L. Research on pile-soil interaction mechanism and failure mode of anti-slide piles[D]. Chengdu: Southwest Jiaotong University, 2022. (in Chinese) [18] 石胜伟, 蔡 强, 程英建, 等. 滑坡在役防治工程缺陷分类和健康评价方法[J]. 工程地质学报, 2024, 32(2): 522-528. (SHI S W, CAI Q, CHENG Y J, et al. Defect classification and health assessment method of landslide control engineering in service[J]. Journal of Engineering Geology, 2024, 32(2): 522-528. (in Chinese)SHI S W, CAI Q, CHENG Y J, et al. Defect classification and health assessment method of landslide control engineering in service[J]. Journal of Engineering Geology, 2024, 32(2): 522-528. (in Chinese) [19] 刘 卓. 极端降雨下抗滑桩局部失效成因研究——以吉林抚生村滑坡为例[J]. 甘肃水利水电技术, 2024, 60(1): 58-64. (LIU Z. Study on the causes of local failure of anti-slide piles under extreme rainfall — a case study of Fusheng village landslide in Jilin[J]. Gansu Water Resources and Hydropower Technology, 2024, 60(1): 58-64. (in Chinese)LIU Z. Study on the causes of local failure of anti-slide piles under extreme rainfall — a case study of Fusheng village landslide in Jilin[J]. Gansu Water Resources and Hydropower Technology, 2024, 60(1): 58-64. (in Chinese) [20] 吴 永, 何思明, 李新坡. 地震波作用下抗滑桩的失效机理[J]. 四川大学学报(工程科学版), 2009, 41(3): 284-288. (WU Y, HE S M, LI X P. Failure mechanism of anti-slide pile under seismic wave[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(3): 284-288. (in Chinese)WU Y, HE S M, LI X P. Failure mechanism of anti-slide pile under seismic wave[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(3): 284-288. (in Chinese) [21] 谢文豪. 基于内聚力模型的悬臂式抗滑桩承载性能研究[D]. 重庆: 重庆交通大学, 2023. (XIE W H. Research on the bearing performance of cantilever anti slip pile based on cohesion model[D]. Chongqing: Chongqing Jiaotong University, 2023. (in Chinese)XIE W H. Research on the bearing performance of cantilever anti slip pile based on cohesion model[D]. Chongqing: Chongqing Jiaotong University, 2023. (in Chinese) [22] 周云涛, 石胜伟, 蔡 强, 等. 基于能量损失的抗滑桩损伤模型及其应用[J]. 地质力学学报, 2019, 25(6): 1107-1115. (ZHOU Y T, SHI S W, CAI Q, et al. Damage model of anti-slide pile based on energy loss and its application[J]. Journal of Geomechanics, 2019, 25(6): 1107-1115. (in Chinese) doi: 10.12090/j.issn.1006-6616.2019.25.06.094ZHOU Y T, SHI S W, CAI Q, et al. Damage model of anti-slide pile based on energy loss and its application[J]. Journal of Geomechanics, 2019, 25(6): 1107-1115. (in Chinese) doi: 10.12090/j.issn.1006-6616.2019.25.06.094 [23] 中华人民共和国住房和城乡建设部. 建筑桩基技术规范: JGJ 94—2008[S]. 北京: 中国建筑工业出版社, 2008. (Technical code for building pile foundations: JGJ94—2008[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese)Technical code for building pile foundations: JGJ94—2008[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese) [24] 李铁洪, 刘永才. 抗滑桩的破坏形态与有限元设计方法[J]. 中外公路, 2009, 29(2): 36-40. (LI T H, LIU Y C. Failure modes of anti-slide piles and finite element design method[J]. Journal of China & Foreign Highway, 2009, 29(2): 36-40. (in Chinese)LI T H, LIU Y C. Failure modes of anti-slide piles and finite element design method[J]. Journal of China & Foreign Highway, 2009, 29(2): 36-40. (in Chinese) [25] 孙岩平. 抗滑桩失效判断与滑坡稳定性分析[D]. 西安: 长安大学, 2013. (SUN Y P. Anti-slide pile failure judgment and stability analysis of sliding[D]. Xi’an: Chang’an University, 2013. (in Chinese)SUN Y P. Anti-slide pile failure judgment and stability analysis of sliding[D]. Xi’an: Chang’an University, 2013. (in Chinese) [26] 杨金栋. 既有抗滑桩的损伤检测与补强加固技术[J]. 铁道建筑, 2012(5): 107-109. (YANG J D. Damage detection and reinforcement technology for existing anti-slide piles[J]. Railway Engineering, 2012(5): 107-109. (in Chinese)YANG J D. Damage detection and reinforcement technology for existing anti-slide piles[J]. Railway Engineering, 2012(5): 107-109. (in Chinese) [27] 李寻昌. 滑坡与锚杆抗滑桩相互作用的大型物理模型试验研究[D]. 西安: 长安大学, 2011. (LI X C. Large physical model test on the interaction between the landslide and anchor anti-slide pile[D]. Xi’an: Chang’an University, 2011. (in Chinese)LI X C. Large physical model test on the interaction between the landslide and anchor anti-slide pile[D]. Xi’an: Chang’an University, 2011. (in Chinese) [28] 胡永久. 隧道进口端边坡抗滑桩失效成因及加固分析[J]. 交通科技与管理, 2023, 4(2): 140-142. (HU Y J. Analysis of the Causes of failure and reinforcement of anti-slide piles at the tunnel entrance slope[J]. Journal of Transportation Science and Management, 2023, 4(2): 140-142. (in Chinese)HU Y J. Analysis of the Causes of failure and reinforcement of anti-slide piles at the tunnel entrance slope[J]. Journal of Transportation Science and Management, 2023, 4(2): 140-142. (in Chinese) [29] 苟德明, 邓少军. 偏压隧道抗滑桩回填反压失效原因分析及处治措施[J]. 中国科技信息, 2010(6): 55-58. (GOU D M, DENG S J. Failure reason analysis and treatment measures of counter-pressure filling with anti-slide piles in unsymmetrical pressure tunnel[J]. China Science and Technology Information, 2010(6): 55-58. (in Chinese) doi: 10.3969/j.issn.1001-8972.2010.06.015GOU D M, DENG S J. Failure reason analysis and treatment measures of counter-pressure filling with anti-slide piles in unsymmetrical pressure tunnel[J]. China Science and Technology Information, 2010(6): 55-58. (in Chinese) doi: 10.3969/j.issn.1001-8972.2010.06.015 [30] 王 勇, 杨全忠, 张元元, 等. 某悬臂式抗滑桩倾斜原因分析及处置[J]. 四川地质学报, 2022, 42(4): 611-614. (WANG Y, YANG Q Z, ZHANG Y Y, et al. Tilting cause analysis and disposal of a cantilever anti-slide pile[J]. Acta Geologica Sichuan, 2022, 42(4): 611-614. (in Chinese) doi: 10.3969/j.issn.1006-0995.2022.04.013WANG Y, YANG Q Z, ZHANG Y Y, et al. Tilting cause analysis and disposal of a cantilever anti-slide pile[J]. Acta Geologica Sichuan, 2022, 42(4): 611-614. (in Chinese) doi: 10.3969/j.issn.1006-0995.2022.04.013 [31] 林剑铭, 廖小平, 魏土荣, 等. 受损既有抗滑桩补强加固设计研究[J]. 土工基础, 2015, 29(1): 22-25. (LIN J M, LIAO X P, WEI T R, et al. Strengthening design of a defected slide-resistant cast-in-place concrete pile[J]. Soil Engineering and Foundation, 2015, 29(1): 22-25. (in Chinese)LIN J M, LIAO X P, WEI T R, et al. Strengthening design of a defected slide-resistant cast-in-place concrete pile[J]. Soil Engineering and Foundation, 2015, 29(1): 22-25. (in Chinese) [32] 郭志权. 钻孔压灌超流态混凝土桩常见事故及处理方法[J]. 煤炭工程, 2003(12): 23-26. (GUO Z Q. Common failures and treatment measures of the bored pile made by pressure and superfluidity method[J]. Coal Engineering, 2003(12): 23-26. (in Chinese) doi: 10.3969/j.issn.1671-0959.2003.12.008GUO Z Q. Common failures and treatment measures of the bored pile made by pressure and superfluidity method[J]. Coal Engineering, 2003(12): 23-26. (in Chinese) doi: 10.3969/j.issn.1671-0959.2003.12.008 [33] CHOW Y K. Analysis of piles used for slope stabilization[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20(9): 635-646. doi: 10.1002/(SICI)1096-9853(199609)20:9<635::AID-NAG839>3.0.CO;2-X [34] 周喜武, 朱俊高, 包腾飞, 等. 抗滑桩极限位移及桩侧阻力分布型式研究[J]. 三峡大学学报(自然科学版), 2024, 46(1): 71-75. (ZHOU X W, ZHU J G, BAO T F, et al. Study on ultimate displacement and lateral resistance distribution pattern of anti-slide pile[J]. Journal of China Three Gorges University (Natural Sciences), 2024, 46(1): 71-75. (in Chinese)ZHOU X W, ZHU J G, BAO T F, et al. Study on ultimate displacement and lateral resistance distribution pattern of anti-slide pile[J]. Journal of China Three Gorges University (Natural Sciences), 2024, 46(1): 71-75. (in Chinese) [35] LIU D Z, HU X L, ZHOU C, et al. Deformation mechanisms and evolution of a pile-reinforced landslide under long-term reservoir operation[J]. Engineering Geology, 2020, 275: 105747. doi: 10.1016/j.enggeo.2020.105747 [36] 吕韶全, 孙狂飙, 王少锋, 等. 考虑土体自重应力影响的抗滑桩三维土拱效应[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(4): 510-517. (LÜ S Q, SUN K B, WANG S F, et al. Three-dimensional soil arching effect considering the influence of soil gravity stress on anti-slide pile[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2021, 53(4): 510-517. (in Chinese)LÜ S Q, SUN K B, WANG S F, et al. Three-dimensional soil arching effect considering the influence of soil gravity stress on anti-slide pile[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2021, 53(4): 510-517. (in Chinese) [37] 李 浩, 殷德胜, 吴海林. 桩–土作用下桩间距及桩位对抗滑桩及土体力学特性的影响[J]. 科学技术与工程, 2021, 21(4): 1529-1535. (LI H, YIN D S, WU H L. Influence of pile spacing and position on sliding pile and soil mechanical properties under pile-soil interaction[J]. Science Technology and Engineering, 2021, 21(4): 1529-1535. (in Chinese) doi: 10.3969/j.issn.1671-1815.2021.04.040LI H, YIN D S, WU H L. Influence of pile spacing and position on sliding pile and soil mechanical properties under pile-soil interaction[J]. Science Technology and Engineering, 2021, 21(4): 1529-1535. (in Chinese) doi: 10.3969/j.issn.1671-1815.2021.04.040 [38] 王 壮, 苏 雷, 时 伟, 等. 地震作用下不同支护结构对滑坡加固效果研究[J]. 工程地质学报, 2023, 31(1): 176-187. (WANG Z, SU L, SHI W, et al. Reinforcement effect of different support structures against landslide under earthquake[J]. Journal of Engineering Geology, 2023, 31(1): 176-187. (in Chinese)WANG Z, SU L, SHI W, et al. Reinforcement effect of different support structures against landslide under earthquake[J]. Journal of Engineering Geology, 2023, 31(1): 176-187. (in Chinese) [39] CHEN G P, YANG C W, TONG X H, et al. Shaking table test on dynamic response of a deposit slope with a weak interlayer reinforced by the pile-anchor structure[J]. Soil Dynamics and Earthquake Engineering, 2023, 170: 107912. doi: 10.1016/j.soildyn.2023.107912 [40] 周 勇, 王仲凯, 杨校辉. 舟曲江顶崖滑坡抗滑桩桩身响应监测分析[J]. 工程地质学报, 2022, 30(1): 197-204. (ZHOU Y, WANG Z K, YANG X H. Monitoring analysis of anti-slide piles for Jiangdingya landslide in Zhouqu[J]. Journal of Engineering Geology, 2022, 30(1): 197-204. (in Chinese)ZHOU Y, WANG Z K, YANG X H. Monitoring analysis of anti-slide piles for Jiangdingya landslide in Zhouqu[J]. Journal of Engineering Geology, 2022, 30(1): 197-204. (in Chinese) [41] 王雪松, 程 桦, 姚直书, 等. 富水砂层宾汉浆液柱形渗透扩散模型及其试验研究[J]. 煤田地质与勘探, 2024, 52(8): 124-133. (WANG X S, CHENG H, YAO Z S, et al. A cylindrical permeation and diffusion model for Bingham grout in water-rich sand layers and its experimental research[J]. Coal Geology & Exploration, 2024, 52(8): 124-133. (in Chinese) doi: 10.12363/issn.1001-1986.24.03.0144WANG X S, CHENG H, YAO Z S, et al. A cylindrical permeation and diffusion model for Bingham grout in water-rich sand layers and its experimental research[J]. Coal Geology & Exploration, 2024, 52(8): 124-133. (in Chinese) doi: 10.12363/issn.1001-1986.24.03.0144 [42] 韩 鑫, 叶 飞, 应凯臣, 等. 考虑自重的盾构壁后注浆浆液驱替渗透扩散[J]. 华中科技大学学报(自然科学版), 2020, 48(4): 37-42. (HAN X, YE F, YING K C, et al. Displacement effect on penetration diffusion of backfill grouting of shield tunnel considering self-weight[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(4): 37-42. (in Chinese)HAN X, YE F, YING K C, et al. Displacement effect on penetration diffusion of backfill grouting of shield tunnel considering self-weight[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(4): 37-42. (in Chinese) [43] 钟 杰, 李 博, 宋振宇, 等. 基于离散裂隙网络的围岩注浆加固规律研究[J]. 地下空间与工程学报, 2024, 20(4): 1286-1297. (ZHONG J, LI B, SONG Z Y, et al. Numerical study on grouting reinforcement effect on fractured rock masses of tunnels based on discrete fracture networks[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(4): 1286-1297. (in Chinese)ZHONG J, LI B, SONG Z Y, et al. Numerical study on grouting reinforcement effect on fractured rock masses of tunnels based on discrete fracture networks[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(4): 1286-1297. (in Chinese) -
下载: