Reinforcement effect of gravel filling in stepped site by dynamic consolidation
-
摘要: 强夯法处理地基施工便捷、成本低廉,大规模应用在沿海软土区域。北京受“7·31”特大降雨影响,部分山区居民住宅水毁严重,新建住宅为二层洋房,承载力需求较低,工程场地为山前台阶状场地,选择强夯法进行地基处理,并对碎石填土区域强夯加固效果进行分析。依托门头沟区斋堂镇沿河口村水毁重建项目,利用数值计算软件对强夯加固处理效果进行模拟,结合现场实际工程施工及检测资料,针对填土深度、夯锤间距、夯锤尺寸、夯击次数等因素进行分析,得出碎石填土地层对应的强夯影响深度修正系数以及台阶状场地夯点布置最佳位置,数值模型计算结果与现场检测结果吻合。Abstract: The dynamic compaction method is widely used in coastal soft soil areas because of its convenient construction and low cost. In Beijing, affected by the heavy rainfall on July 31, 2023, some residential buildings in mountainous areas were seriously damaged by water. The newly built houses are two-story western-style houses with low bearing capacity demand. The project site is a terrace site at the front of the mountain. The dynamic compaction method was selected for foundation treatment, and the effect of dynamic compaction in the gravel-filled area was analyzed. Relying on the water-damaged reconstruction project of Yanhekou village, Zhaitang town, Mentougou District, the effect of dynamic compaction is simulated by using numerical calculation software. Combined with the actual engineering construction and testing data, the factors such as filling depth, rammer spacing, rammer size, and tamping times were analyzed, and the correction coefficient of dynamic compaction influence depth corresponding to the gravel filling stratum and the optimal location of tamping points in the stepped site were obtained. The numerical model calculation results are consistent with the field test results.
-
Key words:
- dynamic consolidation method /
- numerical calculation /
- ABAQUS /
- reinforcement effect /
- stepped site
-
表 1 土体及钢材计算参数表
土层名称 重度
/(g∙cm−3)黏聚力
/kPa内摩擦角
/(°)压缩模量
/MPa黏质粉土素填土① 18 10 10 3 碎石填土①2 20 2 30 10 卵石② 22 2 40 38 钢材 78.5 2.06×105 -
[1] 许汉华, 刘文连, 张国海, 等. 滨海软土地基强夯碎石置换数值模拟研究[J]. 地质灾害与环境保护, 2020, 31(4): 86-93. (XU H H, LIU W L, ZHANG G H, et al. Research on numerical simulation of replacement of dynamic compaction gravel in coastal soft soil foundation[J]. Journal of Geological Hazards and Environment Preservation, 2020, 31(4): 86-93. (in Chinese) doi: 10.3969/j.issn.1006-4362.2020.04.016XU H H, LIU W L, ZHANG G H, et al. Research on numerical simulation of replacement of dynamic compaction gravel in coastal soft soil foundation[J]. Journal of Geological Hazards and Environment Preservation, 2020, 31(4): 86-93. (in Chinese) doi: 10.3969/j.issn.1006-4362.2020.04.016 [2] 赵家琛, 吕 江, 赵 晖, 等. 高能级强夯处理抛填路基的有效加固深度[J]. 土木与环境工程学报(中英文), 2021, 43(5): 27-33. (ZHAO J C, LV J, ZHAO H, et al. Effective reinforcement depth of high energy dynamic compaction for filled subgrade[J]. Journal of Civil and Environmental Engineering, 2021, 43(5): 27-33. (in Chinese)ZHAO J C, LV J, ZHAO H, et al. Effective reinforcement depth of high energy dynamic compaction for filled subgrade[J]. Journal of Civil and Environmental Engineering, 2021, 43(5): 27-33. (in Chinese) [3] 陶耀东, 沈海军, 刘 提, 等. 基于三维数值模拟的高填方边坡强夯效应研究[J]. 宁波大学学报(理工版), 2023, 36(2): 50-56. (TAO Y D, SHEN H J, LIU T, et al. Dynamic compaction effects of high-fill slope based on three-dimensional numerical simulation[J]. Journal of Ningbo University (NSEE), 2023, 36(2): 50-56. (in Chinese)TAO Y D, SHEN H J, LIU T, et al. Dynamic compaction effects of high-fill slope based on three-dimensional numerical simulation[J]. Journal of Ningbo University (NSEE), 2023, 36(2): 50-56. (in Chinese) [4] 张忠和. 强夯法加固地基振动效应数值分析[D]. 北京: 中国地质大学(北京), 2015. (ZHANG Z H. Numerical research of foundation vibration effect under consolidation with dynamic compaction[D]. Beijing: China University of Geosciences (Beijing), 2015. (in Chinese)ZHANG Z H. Numerical research of foundation vibration effect under consolidation with dynamic compaction[D]. Beijing: China University of Geosciences (Beijing), 2015. (in Chinese) [5] 张丽娟. 强夯法地基加固数值模拟及工程案例分析[D]. 杭州: 浙江大学, 2020. (ZHANG L J. Numerical simulation and engineering case analysis of dynamic consolidation method for reinforcing foundations[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)ZHANG L J. Numerical simulation and engineering case analysis of dynamic consolidation method for reinforcing foundations[D]. Hangzhou: Zhejiang University, 2020. (in Chinese) [6] 向泽华, 胡焕校, 吴高权. 强夯作用下土体动力特性的数值模拟[J]. 水资源与水工程学报, 2015, 26(6): 207-211. (XIANG Z H, HU H X, WU G Q. Numerical simulation of dynamic characteristics of soil under role of strong compaction[J]. Journal of Water Resources & Water Engineering, 2015, 26(6): 207-211. (in Chinese) doi: 10.11705/j.issn.1672-643X.2015.06.039XIANG Z H, HU H X, WU G Q. Numerical simulation of dynamic characteristics of soil under role of strong compaction[J]. Journal of Water Resources & Water Engineering, 2015, 26(6): 207-211. (in Chinese) doi: 10.11705/j.issn.1672-643X.2015.06.039 [7] 林海铭. 强夯法对周边环境影响的数值模拟[J]. 广东建材, 2019, 35(6): 59-61, 18. (LIN H M. Numerical simulation of the effect of dynamic compaction on the surrounding environment[J]. Guangdong Building Materials, 2019, 35(6): 59-61, 18. (in Chinese)LIN H M. Numerical simulation of the effect of dynamic compaction on the surrounding environment[J]. Guangdong Building Materials, 2019, 35(6): 59-61, 18. (in Chinese) [8] 郑 江. 强夯法施工参数对加固效果的影响及数值模拟研究[D]. 石家庄: 石家庄经济学院, 2013. (ZHENG J. Construction parameters on the reinforcement of dynamic consolidation effect and numerical simulation[D]. Shijiazhuang: Shijiazhuang University of Economics, 2013. (in Chinese)ZHENG J. Construction parameters on the reinforcement of dynamic consolidation effect and numerical simulation[D]. Shijiazhuang: Shijiazhuang University of Economics, 2013. (in Chinese) [9] 张小莉, 伍翔飞, 王迎丰, 等. 强夯碎石桩复合地基固结特性分析[J]. 水利与建筑工程学报, 2022, 20(1): 56-61. (ZHANG X L, WU X F, WANG Y F, et al. Consolidation behavior analysis of dynamic compaction stone columns reinforced foundation[J]. Journal of Water Resources and Architectural Engineering, 2022, 20(1): 56-61. (in Chinese) doi: 10.3969/j.issn.1672-1144.2022.01.008ZHANG X L, WU X F, WANG Y F, et al. Consolidation behavior analysis of dynamic compaction stone columns reinforced foundation[J]. Journal of Water Resources and Architectural Engineering, 2022, 20(1): 56-61. (in Chinese) doi: 10.3969/j.issn.1672-1144.2022.01.008 [10] 赵延林, 龚雨林, 张子煜. 深厚换填砂土地基强夯有效加固深度的影响因素[J]. 黑龙江科技大学学报, 2023, 33(5): 710-717. (ZHAO Y L, GONG Y L, ZHANG Z Y. Influencing factors of effective reinforcement depth by dynamic compaction on deep replacement of sand soil foundation[J]. Journal of Heilongjiang University of Science & Technology, 2023, 33(5): 710-717. (in Chinese) doi: 10.3969/j.issn.2095-7262.2023.05.014ZHAO Y L, GONG Y L, ZHANG Z Y. Influencing factors of effective reinforcement depth by dynamic compaction on deep replacement of sand soil foundation[J]. Journal of Heilongjiang University of Science & Technology, 2023, 33(5): 710-717. (in Chinese) doi: 10.3969/j.issn.2095-7262.2023.05.014 [11] 朱常志. 软土地基堆载预压联合强夯的固结变形与承载性状研究[D]. 北京: 中国矿业大学(北京), 2018. (ZHU C Z. The study on consolidation deformation and bearing behavior of the soft soil strengthening with surcharge preloading combined with dynamic compaction method[D]. Beijing: China University of Mining & Technology (Beijing), 2018. (in Chinese)ZHU C Z. The study on consolidation deformation and bearing behavior of the soft soil strengthening with surcharge preloading combined with dynamic compaction method[D]. Beijing: China University of Mining & Technology (Beijing), 2018. (in Chinese) -