留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲基硅酸钠改性生土耐水性能试验及机理研究

王崴 杨杨

王崴, 杨杨. 甲基硅酸钠改性生土耐水性能试验及机理研究[J]. 岩土工程技术, 2026, 40(1): 132-140. doi: 10.20265/j.cnki.issn.1007-2993.2024-0524
引用本文: 王崴, 杨杨. 甲基硅酸钠改性生土耐水性能试验及机理研究[J]. 岩土工程技术, 2026, 40(1): 132-140. doi: 10.20265/j.cnki.issn.1007-2993.2024-0524
WANG Wei, YANG Yang. Experimental and mechanistic study on the water resistance of sodium methylsilicate-modified raw soil[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2026, 40(1): 132-140. doi: 10.20265/j.cnki.issn.1007-2993.2024-0524
Citation: WANG Wei, YANG Yang. Experimental and mechanistic study on the water resistance of sodium methylsilicate-modified raw soil[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2026, 40(1): 132-140. doi: 10.20265/j.cnki.issn.1007-2993.2024-0524

甲基硅酸钠改性生土耐水性能试验及机理研究

doi: 10.20265/j.cnki.issn.1007-2993.2024-0524
基金项目: 2023年自治区直属高校基本科研业务费项目(JY20230115);内蒙古自治区自然科学基金项目(2025MS05065)
详细信息
    作者简介:

    王 崴,男,1976年生,硕士,副教授,高级工程师,主要从事建筑构造与材料研究。E-mail:7414954@qq.com

  • 中图分类号: TU411

Experimental and mechanistic study on the water resistance of sodium methylsilicate-modified raw soil

  • 摘要: 以内蒙古中部生土为基材,采用表面涂刷与内掺改性两种方法,探究甲基硅酸钠(SM)对生土材料耐水性能的强化机制。通过60 min静水浸泡和120 min动态冲刷试验得出:(1)强度性能:表面涂刷与内掺试件平均抗压强度较对照组分别提升16.67%和47.66%,(2)静水性能:表面涂刷与内掺试件平均吸水率为1.57%和2.17%,软化系数达0.80和0.81;(3)抗冲刷能力:表面涂刷与内掺试件平均吸水率为0.97%和2.11%,软化系数为0.55和0.63;(4)微观机制:表面涂刷改性形成外部包裹式防水层,而内掺改性通过SM与土颗粒生成聚硅氧烷膜,同步增强防水性与结构稳定性。

     

  • 图  1  喷淋试验工具

    Figure  1.  Spray test tool

    图  2  改性生土试块抗压强度随SM涂刷浓度的关系

    Figure  2.  Relation of compressive strength of modified raw soil test block with SM coating concentration

    图  3  改性生土试块浸泡60 min吸水率随SM涂刷浓度的关系

    Figure  3.  Relationship of water absorption of modified raw soil test block after soaking for 60 min with SM coating concentration

    图  4  改性生土试块浸泡60 min软化系数随SM涂刷浓度的关系

    Figure  4.  Relationship between the softening coefficient of the modified raw soil test block soaked for 60 min and the concentration of SM brushing

    图  5  改性生土试块抗压强度随SM掺量的关系

    Figure  5.  Relationship of compressive strength of modified raw soil test block with the amount of SM

    图  6  改性生土试块浸泡60 min吸水率随SM掺量的关系

    Figure  6.  Relationship of water absorption of modified raw soil test block with SM content after soaking for 60 min

    图  7  改性生土试块浸泡60 min软化系数随SM掺量的关系

    Figure  7.  Softening coefficient of the modified raw soil test block soaked for 60 min is related to the amount of SM

    图  8  素土与面层涂刷SM试块120 min喷淋冲刷终态比较

    Figure  8.  Comparison of the final state of 120 min spray scouring between plain soil and surface coated SM test block

    图  9  面层涂刷SM试块表皮照片

    Figure  9.  Surface coating SM test block skin

    图  10  素土与内掺SM试块120 min喷淋冲刷终态比较

    Figure  10.  Comparison of the final state of 120 min spray washing between plain soil and SM doped test block

    图  11  改性生土试块冲刷120 min吸水率随SM掺量的关系

    Figure  11.  Relation of water absorption of modified raw soil test block with SM content after 120 min scouring

    图  12  改性生土试块冲刷120 min软化系数随SM掺量的关系

    Figure  12.  Relation of softening coefficient of modified raw soil test block with SM content in 120 min

    图  13  微观样本取样位置

    Figure  13.  Micro sample sampling location

    表  1  土壤粒径分析(质量分数)

    Table  1.   Soil particle size analysis (mass fraction)

    筛孔尺寸/mm>22~11~0.50.5~0.250.25~0.10.1~0.075<0.075
    占比/%0.822.405.0010.7642.8924.6613.47
    下载: 导出CSV

    表  2  面掺甲基硅酸钠(浓度)试验配合比

    Table  2.   Experimental mix ratio of sodium methylsilicate (concentration) for surface doping

    编号 JMC-10 JMC-15 JMC-20 JMC-25 JMC-30
    SM浓度/% 1 1.5 2 2.5 3
    编号 JMC-35 JMC-40 JMC-45 JMC-50 JMC-55
    SM浓度/% 3.5 4 4.5 5 5.5
    下载: 导出CSV

    表  3  内掺甲基硅酸钠(质量)试验配合比

    Table  3.   Experimental mix ratio for the internal doping of sodium methylsilicate (by mass)

    编号 JNC-03 JNC-05 JNC-07 JNC-09 JNC-11
    SM掺量/% 0.3 0.5 0.7 0.9 1.1
    编号 JNC-13 JNC-15 JNC-17 JNC-19 JNC-21
    SM掺量/% 1.3 1.5 1.7 1.9 2.1
    下载: 导出CSV

    表  4  面层涂刷SM改性生土试块浸泡试验耐水性情况

    Table  4.   Water resistance of surface layer coated with SM modified raw soil test block soaking test

    浸水时间/min 试块浸水效果
    10
    20
    30
    40
    50
    60
    90
    120
    下载: 导出CSV

    表  5  内掺甲基硅酸钠改性生土试块浸泡试验耐水性情况

    Table  5.   Water resistance of soil-modified raw soil test block doped with sodium methylsilicate

    浸水时间/min 试块浸水效果
    10
    20
    30
    40
    50
    60
    90
    120
    下载: 导出CSV

    表  6  面涂SM试块冲刷前后强度变化及软化系数

    Table  6.   Strength change and softening coefficient of SM coated test block before and after scouring

    方法 性能指标 JMC-30 JMC-40 JMC-50
    面层涂刷
    甲基硅酸钠
    浓度/% 3 4 5
    (冲刷前/后抗压强度)/MPa 4.36/− 4.48/2.28 4.54/2.63
    软化系数 0.51 0.58
    质量变化率/% −23.19 0.37 1.57
    下载: 导出CSV

    表  7  SM不同改性生土样本的微观形貌

    Table  7.   Micromorphologies of different modified raw soil samples with SM

    电镜倍数 ST(未掺入甲基硅酸钠) JNC(内掺1.1%甲基硅酸钠) JMC(面涂5%甲基硅酸钠)
    500
    2000
    5000
    下载: 导出CSV
  • [1] 何廷树, 亢泽千, 陈 畅. 甲基硅酸钠对脱硫石膏砌块耐水性能的影响[J]. 建筑材料学报, 2021, 24(2): 247-253,259. (HE T S, KANG Z Q, CHEN C. Influence of sodium methyl silicate on waterproof property of desulfurized gypsum block[J]. Journal of Building Materials, 2021, 24(2): 247-253,259. (in Chinese) doi: 10.3969/j.issn.1007-9629.2021.02.003

    HE T S, KANG Z Q, CHEN C. Influence of sodium methyl silicate on waterproof property of desulfurized gypsum block[J]. Journal of Building Materials, 2021, 24(2): 247-253,259. (in Chinese) doi: 10.3969/j.issn.1007-9629.2021.02.003
    [2] 韩 月, 谢 辉, 刘俊超. 甲基硅酸钠改性发泡石膏性能的试验研究[J]. 建筑科学, 2024, 40(2): 229-236. (HAN Y, XIE H, LIU J C. Experimental study on properties of sodium methyl silicate modified foamed gypsum[J]. Building Science, 2024, 40(2): 229-236. (in Chinese)

    HAN Y, XIE H, LIU J C. Experimental study on properties of sodium methyl silicate modified foamed gypsum[J]. Building Science, 2024, 40(2): 229-236. (in Chinese)
    [3] 张明涛, 王泽萍, 李 鑫, 等. 甲基硅酸盐类防水剂对磷建筑石膏砌块耐水性能的影响[J]. 重庆科技大学学报(自然科学版), 2024, 26(4): 61-67. (ZHANG M T, WANG Z P, LI X, et al. Influence of methyl silicate waterproofing agents on the water resistance perforemance of phosphorus building gypsum blocks[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2024, 26(4): 61-67. (in Chinese)

    ZHANG M T, WANG Z P, LI X, et al. Influence of methyl silicate waterproofing agents on the water resistance perforemance of phosphorus building gypsum blocks[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2024, 26(4): 61-67. (in Chinese)
    [4] 侯永利, 杨 涛. 脱硫石膏强度及耐水性改善方法研究综述[J]. 建筑科学与工程学报, 2024, 41(4): 95-106. (HOU Y L, YANG T. Review on improvement methods of desulfurization gypsum strength and water resistance[J]. Journal of Architecture and Civil Engineering, 2024, 41(4): 95-106. (in Chinese)

    HOU Y L, YANG T. Review on improvement methods of desulfurization gypsum strength and water resistance[J]. Journal of Architecture and Civil Engineering, 2024, 41(4): 95-106. (in Chinese)
    [5] 王 存, 魏书剑, 乔攀举. 甲基硅酸钠改性磷建筑石膏耐水性能研究[J]. 建材技术与应用, 2024(5): 21-24. (WANG C, WEI S J, QIAO P J. Study on water resistance of phosphorous gypsum modified by sodium methylsilicate[J]. Research & Application of Building Materials, 2024(5): 21-24. (in Chinese) doi: 10.3969/j.issn.1009-9441.2024.05.007

    WANG C, WEI S J, QIAO P J. Study on water resistance of phosphorous gypsum modified by sodium methylsilicate[J]. Research & Application of Building Materials, 2024(5): 21-24. (in Chinese) doi: 10.3969/j.issn.1009-9441.2024.05.007
    [6] 温建峰, 范冬冬, 汪志勇, 等. 纳米有机硅防护材料的制备研究[J]. 安徽建筑, 2024, 31(10): 72-73, 172. (WEN J F, FAN D D, WANG Z Y, et al. Study on the preparation of nano organosilicon protective materials[J]. Anhui Architecture, 2024, 31(10): 72-73, 172. (in Chinese)

    WEN J F, FAN D D, WANG Z Y, et al. Study on the preparation of nano organosilicon protective materials[J]. Anhui Architecture, 2024, 31(10): 72-73, 172. (in Chinese)
    [7] 孙卫东. 硫酸盐侵蚀作用下玄武岩纤维改性混凝土耐久性研究[D]. 西安: 西安理工大学, 2024. (SUN W D. Study on the durability of basalt fiber-modified concrete under sulfate erosion[D]. Xi'an: Xi'an University of Technology, 2024. (in Chinese)

    SUN W D. Study on the durability of basalt fiber-modified concrete under sulfate erosion[D]. Xi'an: Xi'an University of Technology, 2024. (in Chinese)
    [8] GUO Z, ZHU Q, LIU C T, et al. Preparation of Ca-Al-Fe deicing salt and modified with sodium methyl silicate for reducing the influence of concrete structure[J]. Construction and Building Materials, 2018, 172: 263-271. doi: 10.1016/j.conbuildmat.2018.03.247
    [9] 岳建伟, 张东桦, 仇玉莹, 等. 基于碳化原理的遗址土养护方法研究[J]. 岩土工程技术, 2025, 39(3): 437-445. (YUE J W, ZHANG D H, QIU Y Y, et al. Conservation method of relics soil based on carbonization principle[J]. Geotechnical Engineering Technique, 2025, 39(3): 437-445. (in Chinese)

    YUE J W, ZHANG D H, QIU Y Y, et al. Conservation method of relics soil based on carbonization principle[J]. Geotechnical Engineering Technique, 2025, 39(3): 437-445. (in Chinese)
    [10] 岳建伟, 肖雅娟, 赵丽敏, 等. 高含水率下郑州商城遗址土改性性能研究[J]. 地震工程学报, 2025, 47(1): 60-68,151. (YUE J W, XIAO Y J, ZHAO L M, et al. Modification performance of soil in the Shang City archaeological site under high water content[J]. China Earthquake Engineering Journal, 2025, 47(1): 60-68,151. (in Chinese)

    YUE J W, XIAO Y J, ZHAO L M, et al. Modification performance of soil in the Shang City archaeological site under high water content[J]. China Earthquake Engineering Journal, 2025, 47(1): 60-68,151. (in Chinese)
    [11] 岳建伟, 杨 雪, 赵丽敏, 等. 开封城墙修复土配合比试验[J]. 建筑材料学报, 2022, 25(5): 532-536,544. (YUE J W, YANG X, ZHAO L M, et al. Experimental on mix proportion of restoration soil for Kaifeng city wall[J]. Journal of Building Materials, 2022, 25(5): 532-536,544. (in Chinese) doi: 10.3969/j.issn.1007-9629.2022.05.013

    YUE J W, YANG X, ZHAO L M, et al. Experimental on mix proportion of restoration soil for Kaifeng city wall[J]. Journal of Building Materials, 2022, 25(5): 532-536,544. (in Chinese) doi: 10.3969/j.issn.1007-9629.2022.05.013
    [12] 岳建伟, 林 健, 王永锋, 等. 开封仿遗址土水理性质的改良研究[J]. 工程科学与技术, 2020, 52(1): 46-55. (YUE J W, LIN J, WANG Y F, et al. Study on the improvement of soil water in Kaifeng imitation site[J]. Advanced Engineering Sciences, 2020, 52(1): 46-55. (in Chinese)

    YUE J W, LIN J, WANG Y F, et al. Study on the improvement of soil water in Kaifeng imitation site[J]. Advanced Engineering Sciences, 2020, 52(1): 46-55. (in Chinese)
    [13] 肖雅娟. 甲基硅酸钠–丙烯酸镁复合聚合物加固土遗址试验研究[D]. 开封: 河南大学, 2024. (XIAO Y J. Experimental study on earthen sites reinforcement with sodium methyl silicate-magnesium acrylate composite polymer[D]. Kaifeng: Henan University, 2024. (in Chinese)

    XIAO Y J. Experimental study on earthen sites reinforcement with sodium methyl silicate-magnesium acrylate composite polymer[D]. Kaifeng: Henan University, 2024. (in Chinese)
    [14] 李秀君, 彭天平, 刘 纪, 等. 甲基硅酸钠对水泥稳定粉土水稳性影响研究[J]. 中国水运, 2022, 22(12): 148-150. (LI X J, PENG T P, LIU J, et al. Effect of sodium methicosilicate on water stability of cement stabilized silty soil[J]. China Water Transport, 2022, 22(12): 148-150. (in Chinese)

    LI X J, PENG T P, LIU J, et al. Effect of sodium methicosilicate on water stability of cement stabilized silty soil[J]. China Water Transport, 2022, 22(12): 148-150. (in Chinese)
    [15] 张 帆, 韩卫成. 各类修复土壤在城墙修复中的应用[J]. 城市建筑, 2025, 22(4): 189-191. (ZHANG F, HAN W C. The Application of various remediation soils in city wall restoration[J]. Urbanism and Architecture, 2025, 22(4): 189-191. (in Chinese)

    ZHANG F, HAN W C. The Application of various remediation soils in city wall restoration[J]. Urbanism and Architecture, 2025, 22(4): 189-191. (in Chinese)
    [16] CHEN L L, WANG Y Q, WANG Z F, et al. Diffusion resisting performance of concrete modified with sodium methyl silicate in saline soil area[J]. Construction and Building Materials, 2022, 350: 128767. doi: 10.1016/j.conbuildmat.2022.128767
    [17] 王巍智, 朱耀冬, 朱文利. 甲基硅酸钠对土遗址水理性质改善的扫描电镜分析[J]. 河南科技, 2024, 51(6): 81-86. (WANG W Z, ZHU Y D, ZHU W L. Scanning electron microscope analysis of methyl sodium silicate on the improvement of hydraulic properties of earthen sites[J]. Journal of Henan Science and Technology, 2024, 51(6): 81-86. (in Chinese)

    WANG W Z, ZHU Y D, ZHU W L. Scanning electron microscope analysis of methyl sodium silicate on the improvement of hydraulic properties of earthen sites[J]. Journal of Henan Science and Technology, 2024, 51(6): 81-86. (in Chinese)
    [18] 张双红, 杨 波, 翟 伟, 等. 甲基硅酸盐/硅酸盐复合膜的组成和性能研究[J]. 材料工程, 2021, 49(5): 163-170. (ZHANG S H, YANG B, ZHAI W, et al. Composition and properties of methyl silicate/silicate composite coatings[J]. Journal of Materials Engineering, 2021, 49(5): 163-170. (in Chinese) doi: 10.11868/j.issn.1001-4381.2019.000850

    ZHANG S H, YANG B, ZHAI W, et al. Composition and properties of methyl silicate/silicate composite coatings[J]. Journal of Materials Engineering, 2021, 49(5): 163-170. (in Chinese) doi: 10.11868/j.issn.1001-4381.2019.000850
    [19] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. (Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [20] 茶增云, 肖振江, 王庆龙, 等. 甲基硅酸钠防水剂抗钙溶蚀室内试验研究[J]. 施工技术(中英文), 2023, 52(13): 138-142. (CHA Z Y, XIAO Z J, WANG Q L, et al. Indoor experimental study of sodium methylsilicate water repellent against calcium soluble corrosion[J]. Construction Technology, 2023, 52(13): 138-142. (in Chinese)

    CHA Z Y, XIAO Z J, WANG Q L, et al. Indoor experimental study of sodium methylsilicate water repellent against calcium soluble corrosion[J]. Construction Technology, 2023, 52(13): 138-142. (in Chinese)
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 修回日期:  2025-04-23
  • 录用日期:  2025-06-26
  • 刊出日期:  2026-02-06

目录

    /

    返回文章
    返回