Review of pit engineering adjacent to existing buildings and structures
-
摘要: 城市更新进程中,基坑工程所面临的周边既有建(构)筑物的情况越来越复杂。为保障基坑工程及其邻近建(构)筑物安全,对国内外邻近既有建(构)筑物基坑工程的研究现状进行了总结,按邻近建(构)筑物类型对工程实例进行了分类,重点介绍了基坑工程对周围土体的影响区间、基坑工程施工以及地下水位变化对邻近建(构)筑物影响的理论研究、数值分析与试验方法相关研究成果、基坑工程对邻近既有建(构)筑物影响的控制措施以及监测技术。基于现有研究成果以及基坑工程所面临的复杂工况,提出了包含深化基坑施工对邻近既有建(构)筑物影响的理论计算方法、复杂地下水环境对邻近既有建(构)筑物的影响、基坑群建设对邻近既有建(构)筑物的耦合作用、基坑工程对邻近既有建(构)筑物影响控制措施的优化设计、邻近既有建(构)筑物变形监测体系的研究方向。Abstract: In the process of urban renewal, foundation pit engineering is confronted with increasingly complex situations involving adjacent existing structures. To ensure the safety of foundation pit engineering and its adjacent existing structures, this paper summarizes the research status of foundation pit engineering adjacent to existing structures at home and abroad, classifies engineering cases according to different types of adjacent existing structures, and focuses on presenting the research achievements regarding the influence range of foundation pit engineering on surrounding soil, theoretical research, numerical analysis and experimental methods for the impacts of foundation pit construction and groundwater level changes on adjacent existing structures, as well as control measures and monitoring technologies for the effects of foundation pit engineering on adjacent existing structures. Based on existing research results and the complex working conditions faced by foundation pit engineering, this paper puts forward several research directions, including further refining the theoretical calculation methods for the influence of foundation pit construction on adjacent existing structures, investigating the impacts of complex groundwater environments on adjacent existing structures, exploring the coupling effects of foundation pit group construction on adjacent existing structures, optimizing the design of control measures for the influence of foundation pit engineering on adjacent existing structures, and improving the deformation monitoring system for adjacent existing structures.
-
表 1 邻近既有建(构)筑物基坑工程实例
Table 1. Selected pit engineering cases adjacent to existing buildings and structures
既有建(构)筑物类型 城市 基坑工程名称 基坑规模(长/宽/深)/m 既有建(构)筑物 备注(净距及影响) 房建工程[3−4] 上海 地铁十二号线换乘站基坑 /18.6/23 某大型超市 地表和周边建筑物沉降变形 温州 某超高建筑基坑 /180/13.4~14.3 某住宅楼 最小净距:12 m 地铁隧道[5−7] 北京 高家园地铁车站换乘厅基坑 190/15/23 地铁十四号线高家园站 最小净距:4.8 m 武汉 某购物中心基坑 340/108/16 地铁一号线黄浦路站 最小净距:15 m 上海 越洋广场基坑 132/45/15 地铁二号线/地铁七号线 最小净距:0 m 上海 世纪大都会基坑 345/170/14.75~22.8 地铁二、四、六、九号线 最小净距:0 m 南昌 中央金融大街基坑 240/80/13 地铁二号线区间 最小净距:29.7 m 重庆 启迪科技园基坑 270/117/9.5 地铁二郎站 最小净距:42 m 东莞 民盈广场基坑 350/272/21 地铁鸿福路站 最小净距:33.7 m 西安 恒森联合广场基坑 53/47/17.3 地铁四号线大差市站 最小净距:10.5 m 西安 南门外综合改造工程基坑 230/37.05/8 地铁二号线 最小净距:2 m 昆明 悦汇广场基坑 93/64/15 地铁白云路站 最小净距:30 m 沈阳 恒隆广场基坑 350/150/20 地铁二号线市府广场车站 最小净距:10 m 广州 恒发广场基坑 85/40/15 地铁一号线区间 最小净距:7.37 m 青岛 梅岭东路地下联络通道基坑 60/40/8.0~8.5 地铁M2号线 最小净距:1.5 m 杭州 杭州新城基坑 78.4/12/6.35 地铁一号线/地铁四号线 最小净距:2.1 m 呼和浩特 新华广场改造及地下空间互联互通建设工程基坑 180/110/14 地铁一号线/地铁二号线 最小净距:5.4 m 宁波 某高层办公楼及公寓基坑 140/100/15.9 地铁二号线 最小净距:11.5 m 桥梁基础[8−12] 郑州 某地铁站台基坑 192.8/29.3~
32.75/22.92京广高铁跨连霍高速公路特大桥 最小净距:36 m 哈尔滨 梅阳湖隧道明挖基坑 / /20 梅阳滩大桥 最小净距:12.5 m 上海 十二号线龙漕路车站基坑 158/19.4/16.5~19.1 三号线高架桥 下穿,最小净距:5 m 苏州 中成商务广场写字楼基坑 156/70/9.6 十一号线高架桥 最小净距:31 m 广州 某深厚淤泥土层深长基坑 120/ /40 大桥桥桩 既有管线[13−14] 杭州 一号线湘湖站基坑 107.8/21.05/15.7~
16.3给水排水管线 管线破裂,附近道路路基最大下沉量达6 m 南宁 竹岭立交附近某工程基坑 市政给水管线 基坑变形,邻近给水管线破裂,造成基坑倒塌并使附近路面开裂塌陷 文物保护
工程[15−18]佛山 地铁三号线大良站基坑 266/19.9/25.3 慈善会古建筑 最小净距:5.4 m 上海 上海中心城区某老街坊保护性综合改造项目基坑 / /18.2 基坑北、东、南三面合围历史保护建筑物 最小净距:4 m 南京 南京夫子庙景区某项目基坑 / /19.6 南京夫子庙 净距:4~5.5 m 昆明 某项目超大深基坑 245/100~150/22.05 昆明飞虎队纪念馆 最小净距:12.8 m 基坑工程影响区域 范围 主要影响区(Ⅰ) 基坑周边0.7H或H·tan(45°–φ/2)范围内 次要影响区(Ⅱ) 基坑周边0.7H—(2.0~3.0)H或H·tan(45°–φ/2) —(2.0~3.0)H范围内 可能影响区(Ⅲ) 基坑周边(2.0~3.0)H范围外 注:H为基坑开挖深度;φ为基坑土体内摩擦角。 表 3 基坑降水造成周围地面沉降的计算方法[36]
Table 3. Calculation methods of ground settlement deformation caused by foundation pit dewatering[36]
分类 特点 计算方法 说明 简化计算方法 常用于综合水力参数描述各项异性的土体,忽略了真实地下水渗流的运动规律,计算简单方便,误差较大 含水层:$ s=\Delta hE\gamma\mathrm{_w}H $ s为土体沉降量;Δh为含水层水位变幅;E为含水层压缩或回弹模量;H为含水层的初始厚度;Hi为第i层土的厚度;e0i为第i层土的初始孔隙比;avi为第i层土的压缩系数;S为储水系数;Se为弹性储水系数;Sy为滞后储水系数;U(t)为t时刻地基土的固结度;s∞为土体最终沉降量;mv为压缩层的体积压缩系数;Δσ’为有效应力增量;Ss为压缩层的储水率;k0为含水层初始渗透系数;n0为含水层初始孔隙率;σ’为有效应力;$ C=\left\{\begin{array}{c}C\mathrm{_c},\sigma'\ge p_{\mathrm{c}} \\ C_{\mathrm{s}},\sigma' \lt p\mathrm{_c}\end{array}\right. $Cc为压缩指数;Cs为回弹指数;α为土体骨架弹性压缩系数;β为水的弹性压缩系数;m为与土性质有关的压缩系数 隔水层:
$ s=\displaystyle\sum_{ }^{ }s_i=\displaystyle\sum_{ }^{ }\dfrac{a_{\mathrm{v}i}}{2\left(1+e_{0i}\right)}\gamma_{\mathrm{w}}\Delta hH_i $贮水系数估算方法 将抽水试验所得水位降深的s-t曲线用配线法求解Ss,预测地面沉降 $ \begin{gathered} S = {S_e} + {S_y} \\ s\left( t \right) = U\left( t \right){s_\infty } = U\left( t \right)S\Delta h \\ \end{gathered} $ 弹性理论计算方法 基于Terzaghi-Jacob理论,假设土体弹性变形,忽略次固结与含水层水力参数变化 $ s=H\gamma_{\mathrm{w}}m_{\mathrm{v}}\Delta h $或$ s=H\dfrac{\Delta\sigma'}{\gamma_{\mathrm{w}}}S\mathrm{_s} $ 非弹性理论计算方法 考虑水力参数变化引起的非弹性变形 $ \begin{gathered}k=k_0\left[\dfrac{n\left(1-n\right)}{n_0\left(1-n\right)^2}\right]^m \\ S_{\mathrm{s}}=\rho g\left(\alpha+n\beta\right) \\ \end{gathered} $或$ \begin{gathered}S_{\mathrm{s}}=0.434\rho g\dfrac{C}{\sigma'\left(1+e\right)} \\ \alpha=\dfrac{0.434C}{\left(1+e\right)\sigma'}=\dfrac{0.434C\left(1-n\right)}{\sigma'} \\ \end{gathered} $ -
[1] 滕延京, 宫剑飞, 李建民. 基础工程技术发展综述[J]. 土木工程学报, 2012, 45(5): 126-140,161. (TENG Y J, GONG J F, LI J M. State of arts of foundation engineering technology development[J]. China Civil Engineering Journal, 2012, 45(5): 126-140,161. (in Chinese)TENG Y J, GONG J F, LI J M. State of arts of foundation engineering technology development[J]. China Civil Engineering Journal, 2012, 45(5): 126-140,161. (in Chinese) [2] 郑建国, 徐 建, 钱春宇, 等. 古建筑抗震与振动控制若干关键技术研究[J]. 土木工程学报, 2023, 56(1): 1-17. (ZHENG J G, XU J, QIAN C Y, et al. Research on several key technologies of earthquake resistance and vibration control of ancient buildings[J]. China Civil Engineering Journal, 2023, 56(1): 1-17. (in Chinese)ZHENG J G, XU J, QIAN C Y, et al. Research on several key technologies of earthquake resistance and vibration control of ancient buildings[J]. China Civil Engineering Journal, 2023, 56(1): 1-17. (in Chinese) [3] 庄海洋, 张艳书, 薛栩超, 等. 深软场地地铁狭长深基坑变形特征实测与已有统计结果的对比分析[J]. 岩土力学, 2016, 37(S2): 561-570. (ZHUANG H Y, ZHANG Y S, XUE X C, et al. Deformation characteristics of narrow-long deep foundation pit for subway station in soft ground and compared with existing statistical results[J]. Rock and Soil Mechanics, 2016, 37(S2): 561-570. (in Chinese)ZHUANG H Y, ZHANG Y S, XUE X C, et al. Deformation characteristics of narrow-long deep foundation pit for subway station in soft ground and compared with existing statistical results[J]. Rock and Soil Mechanics, 2016, 37(S2): 561-570. (in Chinese) [4] 楼春晖, 夏唐代, 刘念武. 软土地区基坑对周边环境影响空间效应分析[J]. 岩土工程学报, 2019, 41(S1): 249-252. (LOU C H, XIA T D, LIU N W. Spatial effects of deformation due to excavation in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 249-252. (in Chinese) doi: 10.11779/CJGE2019S1063LOU C H, XIA T D, LIU N W. Spatial effects of deformation due to excavation in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 249-252. (in Chinese) doi: 10.11779/CJGE2019S1063 [5] 杨 敏. 黄土地区地下空间建设对既有近接隧道稳定性影响研究[D]. 西安: 西安理工大学, 2022. (YANG M. Stability influences of the existing adjacent tunnels caused by the underground space construction in the loess area[D]. Xi’an: Xi’an University of Technology, 2022. (in Chinese)YANG M. Stability influences of the existing adjacent tunnels caused by the underground space construction in the loess area[D]. Xi’an: Xi’an University of Technology, 2022. (in Chinese) [6] 徐长节, 孙凤明, 陈金友, 等. 基坑相邻地铁隧道变形与应力控制措施[J]. 土木建筑与环境工程, 2013, 35(S1): 75-80. (XU C J, SUN F M, CHEN J Y, et al. Analysis on the deformation and stress control measures of metro tunnel near a foundation pit[J]. Journal of Civil and Environmental Engineering, 2013, 35(S1): 75-80. (in Chinese)XU C J, SUN F M, CHEN J Y, et al. Analysis on the deformation and stress control measures of metro tunnel near a foundation pit[J]. Journal of Civil and Environmental Engineering, 2013, 35(S1): 75-80. (in Chinese) [7] 吕立枫. 海淀公园深基坑施工对临近地铁隧道的影响及防控措施研究[D]. 北京: 北京交通大学, 2022. (LÜ L F. Research on the influence and control measures of the adjacent subway tunnel of the deep excavation in Haidian Park[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)LÜ L F. Research on the influence and control measures of the adjacent subway tunnel of the deep excavation in Haidian Park[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese) [8] 郝 鑫. 地铁车站基坑降水对临近高铁桥梁桩基变形影响分析[D]. 郑州: 华北水利水电大学, 2023. (HAO X. Analysis of the effect of subway pit precipitation on pile foundation deformation and surface settlement of adjacent high-speed rail bridges[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2023. (in Chinese)HAO X. Analysis of the effect of subway pit precipitation on pile foundation deformation and surface settlement of adjacent high-speed rail bridges[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2023. (in Chinese) [9] 王木群. 基坑开挖对临近桥桩的影响及基坑稳定性分析[J]. 中外公路, 2014, 34(3): 197-200. (WANG M Q. Impact of pit excavation on adjacent bridge piles and pit stability analysis[J]. Journal of China & Foreign Highway, 2014, 34(3): 197-200. (in Chinese)WANG M Q. Impact of pit excavation on adjacent bridge piles and pit stability analysis[J]. Journal of China & Foreign Highway, 2014, 34(3): 197-200. [10] 张子新, 李佳宇, 周 湘, 等. 近距离开挖卸荷条件下运营地铁高架桥墩响应研究[J]. 岩土力学, 2015, 36(12): 3531-3540. (ZHANG Z X, LI J Y, ZHOU X, et al. A study on the response of the piers of operating metro viaducts under the excavation-induced unloading condition[J]. Rock and Soil Mechanics, 2015, 36(12): 3531-3540. (in Chinese)ZHANG Z X, LI J Y, ZHOU X, et al. A study on the response of the piers of operating metro viaducts under the excavation-induced unloading condition[J]. Rock and Soil Mechanics, 2015, 36(12): 3531-3540. (in Chinese) [11] 梅 祯, 肖军华, 王炳龙. 基坑开挖对临近基坑地铁高架结构变形的影响[J]. 土木与环境工程学报(中英文), 2019, 41(4): 51-58. (MEI Z, XIAO J H, WANG B L. Influence of foundation pit excavation on the deformation of adjacent subway elevated structure[J]. Journal of Civil and Environmental Engineering, 2019, 41(4): 51-58. (in Chinese)MEI Z, XIAO J H, WANG B L. Influence of foundation pit excavation on the deformation of adjacent subway elevated structure[J]. Journal of Civil and Environmental Engineering, 2019, 41(4): 51-58. (in Chinese) [12] 杨忠平, 刘浩宇, 周小涵, 等. 深厚淤泥土深长基坑开挖对邻近建筑的影响[J]. 地下空间与工程学报, 2022, 18(3): 1015-1024. (YANG Z P, LIU H Y, ZHOU X H, et al. Influence of deep foundation pit excavation on adjacent buildings under unfavorable geological conditions of deep silt soil[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(3): 1015-1024. (in Chinese)YANG Z P, LIU H Y, ZHOU X H, et al. Influence of deep foundation pit excavation on adjacent buildings under unfavorable geological conditions of deep silt soil[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(3): 1015-1024. (in Chinese) [13] 张旷成, 李继民. 杭州地铁湘湖站“08·11·15”基坑坍塌事故分析[J]. 岩土工程学报, 2010, 32(S1): 338-342. (ZHANG K C, LI J M. Accident analysis for “08·11·15” foundation pit collapse of Xianghu Station of Hangzhou metro[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 338-342. (in Chinese)ZHANG K C, LI J M. Accident analysis for “08·11·15” foundation pit collapse of Xianghu Station of Hangzhou metro[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 338-342. (in Chinese) [14] GONG X N, ZHANG X C. Excavation collapse of Hangzhou subway station in soft clay and numerical investigation based on orthogonal experiment method[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2012, 13(10): 760-767. [15] 李又云, 郑乃涛, 冯国春, 等. 深基坑开挖对邻近古建筑影响实测分析[J]. 地下空间与工程学报, 2023, 19(S1): 314-322. (LI Y Y, ZHENG N T, FENG G C, et al. Analysis on monitoring data of the influence of deep foundation pit excavation on adjacent ancient building[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(S1): 314-322. (in Chinese)LI Y Y, ZHENG N T, FENG G C, et al. Analysis on monitoring data of the influence of deep foundation pit excavation on adjacent ancient building[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(S1): 314-322. (in Chinese) [16] 徐中华, 顾正瑞, 王卫东, 等. 地下空间开发对其三面围合历保建筑影响实测分析[J]. 土木工程学报, 2024, 57(6): 221-230. (XU Z H, GU Z R, WANG W D, et al. Monitoring analysis on influence of underground space development on its three side enclosed historical protected buildings[J]. China Civil Engineering Journal, 2024, 57(6): 221-230. (in Chinese)XU Z H, GU Z R, WANG W D, et al. Monitoring analysis on influence of underground space development on its three side enclosed historical protected buildings[J]. China Civil Engineering Journal, 2024, 57(6): 221-230. (in Chinese) [17] 谢 三. 临近文物保护建筑深基坑工程变形控制措施研究[J]. 江苏建筑, 2024(2): 81-83,88. (XIE S. Research on deformation control measures of deep foundation pit engineering close to heritage listed buildings[J]. Jiangsu Construction, 2024(2): 81-83,88. (in Chinese)XIE S. Research on deformation control measures of deep foundation pit engineering close to heritage listed buildings[J]. Jiangsu Construction, 2024(2): 81-83,88. (in Chinese) [18] 江书峣, 李 元, 覃 庄, 等. 临近超大深基坑的文物建筑基础加固保护技术[J]. 建设机械技术与管理, 2022, 35(S1): 115-118. (JIANG S Y, LI Y, QIN Z, et al. Optimization design and construction technology of large span ultra-high light steel keel plasterboard partition in high intensity area[J]. Construction Machinery Technology & Management, 2022, 35(S1): 115-118. (in Chinese)JIANG S Y, LI Y, QIN Z, et al. Optimization design and construction technology of large span ultra-high light steel keel plasterboard partition in high intensity area[J]. Construction Machinery Technology & Management, 2022, 35(S1): 115-118. (in Chinese) [19] 周 中, 鄢海涛, 李守文, 等. 高层建筑紧邻深大基坑开挖变形分析[J]. 现代隧道技术, 2022, 59(S1): 1102-1110. (ZHOU Z, YAN H T, LI S W, et al. Analysis of excavation-induced deformation of high-rise building adjacent to deep and large foundation pit[J]. Modern Tunnelling Technology, 2022, 59(S1): 1102-1110. (in Chinese)ZHOU Z, YAN H T, LI S W, et al. Analysis of excavation-induced deformation of high-rise building adjacent to deep and large foundation pit[J]. Modern Tunnelling Technology, 2022, 59(S1): 1102-1110. (in Chinese) [20] HUANG X, HUANG H W, ZHANG D M. Centrifuge modelling of deep excavation over existing tunnels[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2014, 167(1): 3-18. doi: 10.1680/geng.11.00045 [21] ZHANG Z G, ZHANG M X, ZHAO Q H. A simplified analysis for deformation behavior of buried pipelines considering disturbance effects of underground excavation in soft clays[J]. Arabian Journal of Geosciences, 2015, 8(10): 7771-7785. doi: 10.1007/s12517-014-1773-4 [22] ZENG F Y, ZHANG Z J, WANG J H, et al. Observed performance of two adjacent and concurrently excavated deep foundation pits in soft clay[J]. Journal of Performance of Constructed Facilities, 2018, 32(4): 04018040. doi: 10.1061/(ASCE)CF.1943-5509.0001184 [23] 刘继强, 欧雪峰, 张学民, 等. 基坑群开挖对近接运营地铁隧道隆沉变形的影响研究[J]. 现代隧道技术, 2014, 51(4): 81-87,120. (LIU J Q, OU X F, ZHANG X M, et al. Study on effects of group foundation pits excavation on heaving/settlement of adjacent metro tunnel in operation[J]. Modern Tunnelling Technology, 2014, 51(4): 81-87,120. (in Chinese)LIU J Q, OU X F, ZHANG X M, et al. Study on effects of group foundation pits excavation on heaving/settlement of adjacent metro tunnel in operation[J]. Modern Tunnelling Technology, 2014, 51(4): 81-87,120. (in Chinese) [24] 吴 楠, 白 冰, 肖军华, 等. 基坑群施工引起邻近地铁高架结构变形分析[J]. 铁道工程学报, 2018, 35(3): 84-91,96. (WU N, BAI B, XIAO J H, et al. Analysis of the deformation laws of metro elevated structures adjacent to excavation groups[J]. Journal of Railway Engineering Society, 2018, 35(3): 84-91,96. (in Chinese)WU N, BAI B, XIAO J H, et al. Analysis of the deformation laws of metro elevated structures adjacent to excavation groups[J]. Journal of Railway Engineering Society, 2018, 35(3): 84-91,96. (in Chinese) [25] LI M G, CHEN J J, WANG J H. Arching effect on lateral pressure of confined granular material: numerical and theoretical analysis[J]. Granular Matter, 2017, 19(2): 20. doi: 10.1007/s10035-017-0700-2 [26] WANG J H, CHEN J J, LI M G. Concept and characters of deep excavation groups in urban underground space development[J]. Japanese Geotechnical Society Special Publication, 2016, 2(44): 1559-1562. doi: 10.3208/jgssp.ATC6-07 [27] 曾超峰, 孙海昱, 薛秀丽, 等. 多含水层体系基坑抽水诱发邻近建筑桩基受力变形特性[J]. 土木工程学报, 2023, 56(8): 164-173,183. (ZENG C F, SUN H Y, XUE X L, et al. Responses of adjacent building pile foundation to dewatering in multi-aquifer system[J]. China Civil Engineering Journal, 2023, 56(8): 164-173,183. (in Chinese)ZENG C F, SUN H Y, XUE X L, et al. Responses of adjacent building pile foundation to dewatering in multi-aquifer system[J]. China Civil Engineering Journal, 2023, 56(8): 164-173,183. (in Chinese) [28] 原利明. 基坑开挖对周边框架结构建筑物影响[D]. 长春: 吉林建筑大学, 2016. (YUAN L M. Effect of foundation pit excavation on surrounding frame structures[D]. Changchun: Jilin Jianzhu University, 2016. (in Chinese)YUAN L M. Effect of foundation pit excavation on surrounding frame structures[D]. Changchun: Jilin Jianzhu University, 2016. (in Chinese) [29] 毛良根, 邓林恒, 刘国宝. 既有地铁站两侧深基坑实施对地铁强相关影响研究[J]. 地下空间与工程学报, 2013, 9(S2): 2024-2028,2033. (MAO L G, DENG L H, LIU G B. Study on strong influence of subway at both sides of deep foundation implementation on subway station[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(S2): 2024-2028,2033. (in Chinese)MAO L G, DENG L H, LIU G B. Study on strong influence of subway at both sides of deep foundation implementation on subway station[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(S2): 2024-2028,2033. (in Chinese) [30] The Association of British Insurers, The British Tunnelling Society. The joint code of practice for risk management of tunnel works in the UK[S]. British: the British Tunneling Society, 2003. [31] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 城市轨道交通工程监测技术规范: GB 50911—2013[S]. 北京: 中国建筑工业出版社, 2014. (Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for monitoring measurement of urban rail transit engineering: GB 50911—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for monitoring measurement of urban rail transit engineering: GB 50911—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese) [32] 郑 刚, 杜一鸣, 刁 钰, 等. 基坑开挖引起邻近既有隧道变形的影响区研究[J]. 岩土工程学报, 2016, 38(4): 599-612. (ZHENG G, DU Y M, DIAO Y, et al. Influenced zones for deformation of existing tunnels adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 599-612. (in Chinese) doi: 10.11779/CJGE201604003ZHENG G, DU Y M, DIAO Y, et al. Influenced zones for deformation of existing tunnels adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 599-612. (in Chinese) doi: 10.11779/CJGE201604003 [33] CASPE M S. Surface settlement adjacent to braced open cuts[J]. Journal of the Soil Mechanics and Foundations Division, 1966, 92(4): 51-59. doi: 10.1061/JSFEAQ.0000889 [34] BOWLES J E. Foundation analysis and design[M]. 5th ed. New York: McGraw-Hill, 1996. [35] PECK R B. Deep excavations and tunneling in soft ground[C]//Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico, 1969: 225-290. [36] 刘国彬, 王卫东, 刘建航, 等. 基坑工程手册[M]. 2版. 北京: 中国建筑工业出版社, 2009. (LIU G B, WANG W D, LIU J H, et al. Foundation pit engineering handbook[M]. 2nd ed. Beijing: China Architecture & Building Press, 2009. (in Chinese)LIU G B, WANG W D, LIU J H, et al. Foundation pit engineering handbook[M]. 2nd ed. Beijing: China Architecture & Building Press, 2009. (in Chinese) [37] TERZAGHI K, PECK R B, MESRI G. Soil mechanics in engineering practice[M]. 3rd ed. New York: Wiley, 1996. [38] LAME ISHIHARA K. Relations between process of cutting and uniqueness of solutions[J]. Soils and Foundations, 1970, 10(3): 50-65. doi: 10.3208/sandf1960.10.3_50 [39] SCHUSTER M, KUNG G T C, JUANG C H, et al. Simplified model for evaluating damage potential of buildings adjacent to a braced excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1823-1835. doi: 10.1061/(ASCE)GT.1943-5606.0000161 [40] ATTEWELL P B, YEATES J, SELBY A R. Soil movements induced by tunnelling and their effects on pipelines and structures[M]. Glasgow: Blackie, 1986. [41] BOONE S J, WESTLAND J, NUSINK R. Comparative evaluation of building responses to an adjacent braced excavation[J]. Canadian Geotechnical Journal, 1999, 36(2): 210-223. doi: 10.1139/t98-100 [42] ALEXANDRE P. Excavation induced building damage[J]. Earth Geotech Balkema, 2001: 1189-1201. [43] NIKIFOROVA N S, NGUYEN V H. Calculation of building settlement induced by deep excavation under seismic loading[J]. Soil Mechanics and Foundation Engineering, 2022, 58(6): 453-459. doi: 10.1007/s11204-022-09766-y [44] 何小龙, 杨天鸿, 周云伟, 等. 考虑管–土分离的基坑开挖引起邻近地下管线位移分析[J]. 土木与环境工程学报(中英文), 2019, 41(6): 9-16. (HE X L, YANG T H, ZHOU Y W, et al. Analysis of pipeline displacement induced by adjoining foundation pit excavation considering pipeline-soil separation[J]. Journal of Civil and Environmental Engineering, 2019, 41(6): 9-16. (in Chinese)HE X L, YANG T H, ZHOU Y W, et al. Analysis of pipeline displacement induced by adjoining foundation pit excavation considering pipeline-soil separation[J]. Journal of Civil and Environmental Engineering, 2019, 41(6): 9-16. (in Chinese) [45] 成怡冲, 张挺钧, 郑 翔, 等. 软土地区明挖隧道施工引起周边建筑沉降的预测方法[J]. 城市轨道交通研究, 2018, 21(10): 62-66. (CHENG Y C, ZHANG T J, ZHENG X, et al. Prediction method of surrounding building settlement caused by open-excavated tunnel construction in soft soil area[J]. Urban Mass Transit, 2018, 21(10): 62-66. (in Chinese)CHENG Y C, ZHANG T J, ZHENG X, et al. Prediction method of surrounding building settlement caused by open-excavated tunnel construction in soft soil area[J]. Urban Mass Transit, 2018, 21(10): 62-66. (in Chinese) [46] 程 康, 徐日庆, 林存刚, 等. 既有单桩在邻近基坑开挖下的水平向响应简化分析[J]. 浙江大学学报(工学版), 2020, 54(1): 91-101. (CHENG K, XU R Q, LIN C G, et al. Simplified analysis method for evaluating horizontal deformation of single pile due to adjacent foundation pit excavation[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(1): 91-101. (in Chinese)CHENG K, XU R Q, LIN C G, et al. Simplified analysis method for evaluating horizontal deformation of single pile due to adjacent foundation pit excavation[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(1): 91-101. (in Chinese) [47] 李连祥, 符庆宏. 临近基坑开挖复合地基侧向力学性状离心试验研究[J]. 土木工程学报, 2017, 50(6): 85-94. (LI L X, FU Q H. Lateral mechanical behavior of composite ground due to adjacent excavation: centrifuge model test[J]. China Civil Engineering Journal, 2017, 50(6): 85-94. (in Chinese)LI L X, FU Q H. Lateral mechanical behavior of composite ground due to adjacent excavation: centrifuge model test[J]. China Civil Engineering Journal, 2017, 50(6): 85-94. (in Chinese) [48] 木林隆, 朱孟玺, 黄茂松, 等. 基于临近桩基保护要求的基坑变形控制指标研究[J]. 岩土工程学报, 2021, 43(3): 465-470. (MU L L, ZHU M X, HUANG M S, et al. Control criteria for deformation of foundation pits based on protection requirements of adjacent pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 465-470. (in Chinese) doi: 10.11779/CJGE202103009MU L L, ZHU M X, HUANG M S, et al. Control criteria for deformation of foundation pits based on protection requirements of adjacent pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 465-470. (in Chinese) doi: 10.11779/CJGE202103009 [49] 袁传旭, 甄雪东, 陈坤, 等. 新建地铁车站增层开挖对既有桩基侧摩阻力的影响[J/OL]. 土木与环境工程学报(中英文), 1-10[2024-11-06]. https://link.cnki.net/urlid/50.1218.TU.20240209.1431.002. (YUAN C X, ZHEN X D, CHEN K, et al. Effect of excavation beneath for a new subway station on the shaft resistance of an existing pile[J/OL]. Journal of Civil and Environmental Engineering, 1-10[2024-11-06]. https://link.cnki.net/urlid/50.1218.TU.20240209.1431.002.(in Chinese)YUAN C X, ZHEN X D, CHEN K, et al. Effect of excavation beneath for a new subway station on the shaft resistance of an existing pile[J/OL]. Journal of Civil and Environmental Engineering, 1-10[2024-11-06]. https://link.cnki.net/urlid/50.1218.TU.20240209.1431.002.(in Chinese) [50] ZHANG J F, CHEN J J, WANG J H, et al. Prediction of tunnel displacement induced by adjacent excavation in soft soil[J]. Tunnelling and Underground Space Technology, 2013, 36: 24-33. doi: 10.1016/j.tust.2013.01.011 [51] 章润红, 刘汉龙, 仉文岗. 深基坑支护开挖对临近地铁隧道结构的影响分析研究[J]. 防灾减灾工程学报, 2018, 38(5): 857-866. (ZHANG R H, LIU H L, ZHANG W G. Numerical investigation on tunnel responses induced by adjacent deep braced pit excavations[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 857-866. (in Chinese)ZHANG R H, LIU H L, ZHANG W G. Numerical investigation on tunnel responses induced by adjacent deep braced pit excavations[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 857-866. (in Chinese) [52] ZHANG X M, OU X F, YANG J S, et al. Deformation response of an existing tunnel to upper excavation of foundation pit and associated dewatering[J]. International Journal of Geomechanics, 2017, 17(4): 04016112. doi: 10.1061/(ASCE)GM.1943-5622.0000814 [53] 戴宏伟, 陈仁朋, 陈云敏. 地面新施工荷载对临近地铁隧道纵向变形的影响分析研究[J]. 岩土工程学报, 2006, 28(3): 312-316. (DAI H W, CHEN R P, CHEN Y M. Study on effect of construction loads on longitudinal deformation of adjacent metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 312-316. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.03.006DAI H W, CHEN R P, CHEN Y M. Study on effect of construction loads on longitudinal deformation of adjacent metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 312-316. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.03.006 [54] 张治国, 蒋康明, 王志伟, 等. 考虑Pasternak地基模型的基坑开挖诱发既有隧道纵向变形理论分析[J]. 隧道建设(中英文), 2020, 40(S1): 57-67. (ZHANG Z G, JIANG K M, WANG Z W, et al. Theoretical analysis on longitudinal deformation of existing tunnel induced by adjacent foundation pit excavation considering Pasternak foundation model[J]. Tunnel Construction, 2020, 40(S1): 57-67. (in Chinese)ZHANG Z G, JIANG K M, WANG Z W, et al. Theoretical analysis on longitudinal deformation of existing tunnel induced by adjacent foundation pit excavation considering Pasternak foundation model[J]. Tunnel Construction, 2020, 40(S1): 57-67. (in Chinese) [55] 魏 纲, 赵城丽. 基坑开挖引起临近地铁隧道的附加荷载计算方法[J]. 岩石力学与工程学报, 2016, 35(S1): 3408-3417. (WEI G, ZHAO C L. Calculation method of additional load of adjacent metro tunnels due to foundation pit excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3408-3417. (in Chinese)WEI G, ZHAO C L. Calculation method of additional load of adjacent metro tunnels due to foundation pit excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3408-3417. (in Chinese) [56] 周泽林, 陈寿根, 涂 鹏, 等. 基坑开挖对邻近隧道影响的耦合分析方法[J]. 岩土力学, 2018, 39(4): 1440-1449. (ZHOU Z L, CHEN S G, TU P, et al. Coupling method for analyzing the influence on existing tunnel due to adjacent foundations pit excavation[J]. Rock and Soil Mechanics, 2018, 39(4): 1440-1449. (in Chinese)ZHOU Z L, CHEN S G, TU P, et al. Coupling method for analyzing the influence on existing tunnel due to adjacent foundations pit excavation[J]. Rock and Soil Mechanics, 2018, 39(4): 1440-1449. (in Chinese) [57] 王立新. 湿陷性黄土地层与地铁结构相互作用机理及变形控制标准研究[D]. 西安: 长安大学, 2016. (WANG L X. Research on the interaction mechanism and deformation controlling standard between collapsible loess formation and metro structure[D]. Xi'an: Chang’an University, 2016. (in Chinese)WANG L X. Research on the interaction mechanism and deformation controlling standard between collapsible loess formation and metro structure[D]. Xi'an: Chang’an University, 2016. (in Chinese) [58] 马凯伦, 董明礼, 曹 义, 等. 两侧双基坑开挖对密贴地铁车站的影响研究[J]. 地下空间与工程学报, 2022, 18(S2): 1043-1048. (MA K L, DONG M L, CAO Y, et al. Influence of excavation of double foundation pits on both sides of the metro station[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(S2): 1043-1048. (in Chinese)MA K L, DONG M L, CAO Y, et al. Influence of excavation of double foundation pits on both sides of the metro station[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(S2): 1043-1048. (in Chinese) [59] BAGHERZADEH A, FERDOSI B, NAKHAEI J, et al. Numerical analysis of the support system in the transition zone of the Esfahan subway project[J]. Arabian Journal of Geosciences, 2015, 8(6): 3985-4000. doi: 10.1007/s12517-014-1487-7 [60] 张 旭, 张成平, 韩凯航, 等. 隧道下穿既有地铁车站施工结构沉降控制案例研究[J]. 岩土工程学报, 2017, 39(4): 759-766. (ZHANG X, ZHANG C P, HAN K H, et al. Case study of control technology of structural settlements due to tunnelling beneath a subway station[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 759-766. (in Chinese) doi: 10.11779/CJGE201704023ZHANG X, ZHANG C P, HAN K H, et al. Case study of control technology of structural settlements due to tunnelling beneath a subway station[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 759-766. (in Chinese) doi: 10.11779/CJGE201704023 [61] LI M G, CHEN J J, WANG J H, et al. Comparative study of construction methods for deep excavations above shield tunnels[J]. Tunnelling and Underground Space Technology, 2018, 71: 329-339. doi: 10.1016/j.tust.2017.09.014 [62] 黄宏伟, 黄 栩, HELMUT S F. 基坑开挖对下卧运营盾构隧道影响的数值模拟研究[J]. 土木工程学报, 2012, 45(3): 182-189. (HUANG H W, HUANG X, HELMUT S F. Numerical analysis of the influence of deep excavation on underneath existing road tunnel[J]. China Civil Engineering Journal, 2012, 45(3): 182-189. (in Chinese)HUANG H W, HUANG X, HELMUT S F. Numerical analysis of the influence of deep excavation on underneath existing road tunnel[J]. China Civil Engineering Journal, 2012, 45(3): 182-189. (in Chinese) [63] DOLEŽALOVÁ M. Tunnel complex unloaded by a deep excavation[J]. Computers and Geotechnics, 2001, 28(6/7): 469-493. [64] MOOSAVI E, SHIRINABADI R, RAHIMI E, et al. Numerical modeling of ground movement due to twin tunnel structure of Esfahan subway, Iran[J]. Journal of Mining Science, 2018, 53(4): 663-675. doi: 10.1134/S1062739117042655 [65] NEMATOLLAHI M, DIAS D. Three-dimensional numerical simulation of pile-twin tunnels interaction - Case of the Shiraz subway line[J]. Tunnelling and Underground Space Technology, 2019, 86: 75-88. doi: 10.1016/j.tust.2018.12.002 [66] ZHANG D M, XIE X C, LI Z L, et al. Simplified analysis method for predicting the influence of deep excavation on existing tunnels[J]. Computers and Geotechnics, 2020, 121: 103477. doi: 10.1016/j.compgeo.2020.103477 [67] 刘建华, 吴绍明, 王林枫, 等. 深长基坑开挖引发邻近建筑群沉降规律研究[J]. 地下空间与工程学报, 2022, 18(4): 1374-1382. (LIU J H, WU S M, WANG L F, et al. Study on the settlement law of adjacent buildings group caused by deep and long excavation[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(4): 1374-1382. (in Chinese)LIU J H, WU S M, WANG L F, et al. Study on the settlement law of adjacent buildings group caused by deep and long excavation[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(4): 1374-1382. (in Chinese) [68] 王博林, 王 旭, 马学宁, 等. 基坑开挖对邻近桩基影响的室内试验研究[J]. 兰州交通大学学报, 2019, 38(1): 13-18. (WANG B L, WANG X, MA X N, et al. Laboratory test study on influence of foundation pit excavation on adjacent pile foundation[J]. Journal of Lanzhou Jiaotong University, 2019, 38(1): 13-18. (in Chinese) doi: 10.3969/j.issn.1001-4373.2019.01.003WANG B L, WANG X, MA X N, et al. Laboratory test study on influence of foundation pit excavation on adjacent pile foundation[J]. Journal of Lanzhou Jiaotong University, 2019, 38(1): 13-18. (in Chinese) doi: 10.3969/j.issn.1001-4373.2019.01.003 [69] YU Z T, WANG H Y, WANG W J, et al. Experimental and numerical investigation on the effects of foundation pit excavation on adjacent tunnels in soft soil[J]. Mathematical Problems in Engineering, 2021, 2021: 5587857. [70] SHI J W, NG C W W, CHEN Y H. Three-dimensional numerical parametric study of the influence of basement excavation on existing tunnel[J]. Computers and Geotechnics, 2015, 63: 146-158. doi: 10.1016/j.compgeo.2014.09.002 [71] 陈仁朋, ASHRAF A M, 孟凡衍. 基坑开挖对旁侧隧道影响及隔断墙作用离心模型试验研究[J]. 岩土工程学报, 2018, 40(S2): 6-11. (CHEN R P, ASHRAF A M, MENG F Y. Three-dimensional centrifuge modeling of influence of nearby excavations on existing tunnels and effects of cut-off walls[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 6-11. (in Chinese) doi: 10.11779/CJGE2018S2002CHEN R P, ASHRAF A M, MENG F Y. Three-dimensional centrifuge modeling of influence of nearby excavations on existing tunnels and effects of cut-off walls[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 6-11. (in Chinese) doi: 10.11779/CJGE2018S2002 [72] 张玉伟, 谢永利, 翁木生. 非对称基坑开挖对下卧地铁隧道影响的离心试验[J]. 岩土力学, 2018, 39(7): 2555-2562. (ZHANG Y W, XIE Y L, WENG M S. Centrifugal test on influence of asymmetric foundation excavation to an underlying subway tunnel[J]. Rock and Soil Mechanics, 2018, 39(7): 2555-2562. (in Chinese)ZHANG Y W, XIE Y L, WENG M S. Centrifugal test on influence of asymmetric foundation excavation to an underlying subway tunnel[J]. Rock and Soil Mechanics, 2018, 39(7): 2555-2562. (in Chinese) [73] 张文超. 地铁换乘车站深基坑开挖对既有车站的影响研究[D]. 西安: 长安大学, 2017. (ZHANG W C. Study on the influence of deep foundation pit excavation of metro transfer station on existing station[D]. Xi'an: Chang’an University, 2017. (in Chinese)ZHANG W C. Study on the influence of deep foundation pit excavation of metro transfer station on existing station[D]. Xi'an: Chang’an University, 2017. (in Chinese) [74] 王国辉, 陈文化, 聂庆科, 等. 深厚淤泥质土中基坑开挖对基桩影响的离心模型试验研究[J]. 岩土力学, 2020, 41(2): 399-407. (WANG G H, CHEN W H, NIE Q K, et al. Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests[J]. Rock and Soil Mechanics, 2020, 41(2): 399-407. (in Chinese)WANG G H, CHEN W H, NIE Q K, et al. Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests[J]. Rock and Soil Mechanics, 2020, 41(2): 399-407. (in Chinese) [75] HSI J P, CARTER J P, SMALL J C. Surface subsidence and drawdown of the water table due to pumping[J]. Géotechnique, 1994, 44(3): 381-396. [76] PREENE M. Assessment of settlements caused by groundwater control[J]. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 2000, 143(4): 177-190. doi: 10.1680/geng.2000.143.4.177 [77] 阳军生, 刘宝琛. 抽水地面沉降预计的随机介质模型[J]. 水文地质工程地质, 1999, 26(5): 11-13. (YANG J S, LIU B C. A stochastic medium model for prediction of ground subsidence due to water drawing[J]. Hydrogeology & Engineering Geology, 1999, 26(5): 11-13. (in Chinese)YANG J S, LIU B C. A stochastic medium model for prediction of ground subsidence due to water drawing[J]. Hydrogeology & Engineering Geology, 1999, 26(5): 11-13. (in Chinese) [78] 周志芳, 朱宏高, 陈 静, 等. 深基坑降水与沉降的非线性耦合计算[J]. 岩土力学, 2004, 25(12): 1984-1988. (ZHOU Z F, ZHU H G, CHEN J, et al. Nonlinear coupling calculation between dewatering and settlement of deep foundation pits[J]. Rock and Soil Mechanics, 2004, 25(12): 1984-1988. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.12.026ZHOU Z F, ZHU H G, CHEN J, et al. Nonlinear coupling calculation between dewatering and settlement of deep foundation pits[J]. Rock and Soil Mechanics, 2004, 25(12): 1984-1988. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.12.026 [79] 骆冠勇, 潘 泓, 曹 洪, 等. 承压水减压引起的沉降分析[J]. 岩土力学, 2004, 25(S2): 196-200. (LUO G Y, PAN H, CAO H, et al. Analysis of settlements caused by decompression of confined water[J]. Rock and Soil Mechanics, 2004, 25(S2): 196-200. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.z2.040LUO G Y, PAN H, CAO H, et al. Analysis of settlements caused by decompression of confined water[J]. Rock and Soil Mechanics, 2004, 25(S2): 196-200. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.z2.040 [80] 王建秀, 吴林高, 朱雁飞, 等. 地铁车站深基坑降水诱发沉降机制及计算方法[J]. 岩石力学与工程学报, 2009, 28(5): 1010-1019. (WANG J X, WU L G, ZHU Y F, et al. Mechanism of dewatering-induced ground subsidence in deep subway station pit and calculation method[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 1010-1019. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.05.018WANG J X, WU L G, ZHU Y F, et al. Mechanism of dewatering-induced ground subsidence in deep subway station pit and calculation method[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 1010-1019. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.05.018 [81] 金小荣, 俞建霖, 祝哨晨, 等. 基坑降水引起周围土体沉降性状分析[J]. 岩土力学, 2005, 26(10): 1575-1581. (JIN X R, YU J L, ZHU S C, et al. Analysis of behaviors of settlement of pit’s surrounding soils by dewatering[J]. Rock and Soil Mechanics, 2005, 26(10): 1575-1581. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.10.010JIN X R, YU J L, ZHU S C, et al. Analysis of behaviors of settlement of pit’s surrounding soils by dewatering[J]. Rock and Soil Mechanics, 2005, 26(10): 1575-1581. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.10.010 [82] LIU Y, XIANG B H, FU M F. Influence of dewatering in deep excavation on adjacent pile considering water insulation effect of retaining structures[J]. Geotechnical and Geological Engineering, 2019, 37(6): 5123-5130. doi: 10.1007/s10706-019-00966-2 [83] 孟长江, 熊大生, 赵海粟, 等. 基坑降水对临近运营高铁桥墩的影响评估分析[J]. 岩土工程学报, 2014, 36(S2): 265-268. (MENG C J, XIONG D S, ZHAO H S, et al. Assessment of effect of dewatering of excavations on nearby piers of operating high-speed railways[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 265-268. (in Chinese)MENG C J, XIONG D S, ZHAO H S, et al. Assessment of effect of dewatering of excavations on nearby piers of operating high-speed railways[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 265-268. (in Chinese) [84] 周泽林, 陈寿根, 陈 亮, 等. 基坑施工对下卧地铁隧道上抬变形影响的简化理论分析[J]. 岩土工程学报, 2015, 37(12): 2224-2234. (ZHOU Z L, CHEN S G, CHEN L, et al. Analysis of uplift deflection of subway tunnel due to adjacent pit excavation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2224-2234. (in Chinese)ZHOU Z L, CHEN S G, CHEN L, et al. Analysis of uplift deflection of subway tunnel due to adjacent pit excavation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2224-2234. (in Chinese) [85] 王翠英, 黄理兴, 段卫昌, 等. 深基坑降水引起周边地面沉降量值计算修正系数MS的确定[J]. 岩土力学, 2006, 27(6): 1011-1016. (WANG C Y, HUANG L X, DUAN W C, et al. Determination of coefficient MS during calculation of surrounding ground settlement due to foundation pit dewatering[J]. Rock and Soil Mechanics, 2006, 27(6): 1011-1016. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.06.033WANG C Y, HUANG L X, DUAN W C, et al. Determination of coefficient MS during calculation of surrounding ground settlement due to foundation pit dewatering[J]. Rock and Soil Mechanics, 2006, 27(6): 1011-1016. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.06.033 [86] 杨 坤. 基坑降水引起地面沉降的机理分析及应用[D]. 淮南: 安徽理工大学, 2016. (YANG K. The mechanism analysis and application of ground settlement caused by dewatering of foundation pit[D]. Huainan: Anhui University of Science and Technology, 2016. (in Chinese)YANG K. The mechanism analysis and application of ground settlement caused by dewatering of foundation pit[D]. Huainan: Anhui University of Science and Technology, 2016. (in Chinese) [87] 徐增伟. 黄土基坑降水影响地面沉降模型试验研究[D]. 西安: 西安工业大学, 2015. (XU Z W. Model test research about influencing on land subsidence during to loess pit drainage[D]. Xi’an: Xi’an Technological University, 2015. (in Chinese)XU Z W. Model test research about influencing on land subsidence during to loess pit drainage[D]. Xi’an: Xi’an Technological University, 2015. (in Chinese) [88] 李 飞, 徐 劲, 张 飞, 等. 渗流作用下深基坑开挖抗隆起破坏数值模拟[J]. 地下空间与工程学报, 2017, 13(4): 1088-1097. (LI F, XU J, ZHANG F, et al. Numerical simulation of heave failure mechanism of deep foundation pits under seepage[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(4): 1088-1097. (in Chinese)LI F, XU J, ZHANG F, et al. Numerical simulation of heave failure mechanism of deep foundation pits under seepage[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(4): 1088-1097. (in Chinese) [89] 陈凌铜, 朱 丹, 杨 超, 等. 隔水帷幕对深基坑降水开挖变形控制的影响[J]. 土木与环境工程学报(中英文), 2021, 43(4): 24-32. (CHEN L T, ZHU D, YANG C, et al. Influence of waterproof curtain on deformation control of deep foundation pit dewatering and excavation[J]. Journal of Civil and Environmental Engineering, 2021, 43(4): 24-32. (in Chinese)CHEN L T, ZHU D, YANG C, et al. Influence of waterproof curtain on deformation control of deep foundation pit dewatering and excavation[J]. Journal of Civil and Environmental Engineering, 2021, 43(4): 24-32. (in Chinese) [90] 张扬清, 冉岸绿, 武朝军, 等. 降压回灌作用下黏土的渗透特性试验研究[J]. 岩土工程学报, 2015, 37(S1): 21-25. (ZHANG Y Q, RAN A L, WU C J, et al. Experimental study on permeability properties of soft clay in process of pumping and recharge[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 21-25. (in Chinese)ZHANG Y Q, RAN A L, WU C J, et al. Experimental study on permeability properties of soft clay in process of pumping and recharge[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 21-25. (in Chinese) [91] 赵陈鹏. 轨道交通9号线宜山路站基坑降水对地面沉降的影响及室内模型试验研究[D]. 上海: 同济大学, 2007. (ZHAO C P. The research about influence on land subsidence duing to pit drainage at the Yi Shan Road Station of Shanghai Rail Transit Line 9 and indoor model test[D]. Shanghai: Tongji University, 2007. (in Chinese)ZHAO C P. The research about influence on land subsidence duing to pit drainage at the Yi Shan Road Station of Shanghai Rail Transit Line 9 and indoor model test[D]. Shanghai: Tongji University, 2007. (in Chinese) [92] BURFORD D. Heave of tunnels beneath the shell Centre, London, 1959-1986[J]. Géotechnique, 1988, 38(1): 135-137. [93] LO K Y, RAMSAY J A. The effect of construction on existing subway tunnels—a case study from Toronto[J]. Tunnelling and Underground Space Technology, 1991, 6(3): 287-297. doi: 10.1016/0886-7798(91)90140-Y [94] 丁 智, 张 霄, 金杰克, 等. 基坑全过程开挖及邻近地铁隧道变形实测分析[J]. 岩土力学, 2019, 40(S1): 415-423. (DING Z, ZHANG X, JIN J K, et al. Measurement analysis on whole excavation of foundation pit and deformation of adjacent metro tunnel[J]. Rock and Soil Mechanics, 2019, 40(S1): 415-423. (in Chinese)DING Z, ZHANG X, JIN J K, et al. Measurement analysis on whole excavation of foundation pit and deformation of adjacent metro tunnel[J]. Rock and Soil Mechanics, 2019, 40(S1): 415-423. (in Chinese) [95] 许四法, 周奇辉, 郑文豪, 等. 基坑施工对邻近运营隧道变形影响全过程实测分析[J]. 岩土工程学报, 2021, 43(5): 804-812. (XU S F, ZHOU Q H, ZHENG W H, et al. Influences of construction of foundation pits on deformation of adjacent operating tunnels in whole process based on monitoring data[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 804-812. (in Chinese)XU S F, ZHOU Q H, ZHENG W H, et al. Influences of construction of foundation pits on deformation of adjacent operating tunnels in whole process based on monitoring data[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 804-812. (in Chinese) [96] 胡海英, 张玉成, 杨光华, 等. 基坑开挖对既有地铁隧道影响的实测及数值分析[J]. 岩土工程学报, 2014, 36(S2): 431-439. (HU H Y, ZHANG Y C, YANG G H, et al. Measurement and numerical analysis of effect of excavation of foundation pits on metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 431-439. (in Chinese)HU H Y, ZHANG Y C, YANG G H, et al. Measurement and numerical analysis of effect of excavation of foundation pits on metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 431-439. (in Chinese) [97] 张治国, 赵其华, 鲁明浩. 邻近深基坑开挖的历史保护建筑物沉降实测分析[J]. 土木工程学报, 2015, 48(S2): 137-142. (ZHANG Z G, ZHAO Q H, LU M H. Analysis on settlement monitoring of historical protective buildings adjacent to deep foundation pit excavation[J]. China Civil Engineering Journal, 2015, 48(S2): 137-142. (in Chinese)ZHANG Z G, ZHAO Q H, LU M H. Analysis on settlement monitoring of historical protective buildings adjacent to deep foundation pit excavation[J]. China Civil Engineering Journal, 2015, 48(S2): 137-142. (in Chinese) [98] KOJIMA Y, ASAKURA T, YOSHIKAWA K, et al. Tunnel deformation behavior due to ground surface excavation above the tunnel[J]. Journal of the Society of Materials Science, Japan, 2003, 52(8): 958-965. doi: 10.2472/jsms.52.958 [99] SHARMA J S, HEFNY A M, ZHAO J, et al. Effect of large excavation on deformation of adjacent MRT tunnels[J]. Tunnelling and Underground Space Technology, 2001, 16(2): 93-98. doi: 10.1016/S0886-7798(01)00033-5 [100] 刘念武, 陈奕天, 龚晓南, 等. 软土深开挖致地铁车站基坑及邻近建筑变形特性研究[J]. 岩土力学, 2019, 40(4): 1515-1525,1576. (LIU N W, CHEN Y T, GONG X N, et al. Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil[J]. Rock and Soil Mechanics, 2019, 40(4): 1515-1525,1576. (in Chinese)LIU N W, CHEN Y T, GONG X N, et al. Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil[J]. Rock and Soil Mechanics, 2019, 40(4): 1515-1525,1576. (in Chinese) [101] 贾夫子, 王立峰, 逯武全, 等. 基坑开挖对近邻地铁车站和隧道的影响[J]. 岩土力学, 2016, 37(S2): 673-678,714. (JIA F Z, WANG L F, LU W Q, et al. Influence of foundation pit excavation on adjacent metro station and tunnel[J]. Rock and Soil Mechanics, 2016, 37(S2): 673-678,714. (in Chinese)JIA F Z, WANG L F, LU W Q, et al. Influence of foundation pit excavation on adjacent metro station and tunnel[J]. Rock and Soil Mechanics, 2016, 37(S2): 673-678,714. (in Chinese) [102] 邓 旭, 甄 洁, 林森斌, 等. 基坑开挖引起地铁结构隆起的堆载控制研究[J]. 铁道科学与工程学报, 2024, 21(6): 2417-2429. (DENG X, ZHEN J, LIN S B, et al. Loading control for the uplift of subway structures induced by adjacent excavation[J]. Journal of Railway Science and Engineering, 2024, 21(6): 2417-2429. (in Chinese)DENG X, ZHEN J, LIN S B, et al. Loading control for the uplift of subway structures induced by adjacent excavation[J]. Journal of Railway Science and Engineering, 2024, 21(6): 2417-2429. (in Chinese) [103] 李进军, 王卫东. 紧邻地铁区间隧道深基坑工程的设计和实践[J]. 铁道工程学报, 2011, 28(11): 104-111. (LI J J, WANG W D. Design and construction of deep excavation engineering adjacent to the subway tunnel[J]. Journal of Railway Engineering Society, 2011, 28(11): 104-111. (in Chinese) doi: 10.3969/j.issn.1006-2106.2011.11.020LI J J, WANG W D. Design and construction of deep excavation engineering adjacent to the subway tunnel[J]. Journal of Railway Engineering Society, 2011, 28(11): 104-111. (in Chinese) doi: 10.3969/j.issn.1006-2106.2011.11.020 [104] 吴 挺. 长条形基坑分区宽度对变形的影响分析[J]. 地下空间与工程学报, 2021, 17(S2): 807-813. (WU T. Influence analysis of partition width of long strip pit on deformation[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S2): 807-813. (in Chinese)WU T. Influence analysis of partition width of long strip pit on deformation[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S2): 807-813. (in Chinese) [105] 褚 峰, 李永盛, 梁发云, 等. 土体小应变条件下紧邻地铁枢纽的超深基坑变形特性数值分析[J]. 岩石力学与工程学报, 2010, 29(S1): 3184-3192. (CHU F, LI Y S, LIANG F Y, et al. Numerical analysis of deformation of deep excavation adjacent to metro considering small-strain stiffness of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3184-3192. (in Chinese)CHU F, LI Y S, LIANG F Y, et al. Numerical analysis of deformation of deep excavation adjacent to metro considering small-strain stiffness of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3184-3192. (in Chinese) [106] 王定军, 王婉婷, 段 罗, 等. 基坑开挖对下卧地铁隧道的施工影响分析[J]. 地下空间与工程学报, 2017, 13(S1): 223-232. (WANG D J, WANG W T, DUAN L, et al. Construction influence of pit excavation on underlying subway tunnel[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(S1): 223-232. (in Chinese)WANG D J, WANG W T, DUAN L, et al. Construction influence of pit excavation on underlying subway tunnel[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(S1): 223-232. (in Chinese) [107] 温锁林. 近距离上穿运营地铁隧道的基坑明挖施工控制技术[J]. 岩土工程学报, 2010, 32(S2): 451-454. (WEN S L. Construction technology of deep open excavation above running metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 451-454. (in Chinese)WEN S L. Construction technology of deep open excavation above running metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 451-454. (in Chinese) [108] 陈南桥, 王雪鹏, 林 刚, 等. 软土深基坑分区开挖变形规律[J/OL]. 土木与环境工程学报(中英文), 1-12[2024-11-06]. https://link.cnki.net/urlid/50.1218.TU.20241021.1711.002. (CHEN N Q, WANG X P, LIN G, et al. Deformation laws of soft soil deep foundation pit partitioned excavation[J/OL]. Journal of Civil and Environmental Engineering, 1-12[2024-11-06]. https://link.cnki.net/urlid/50.1218.TU.20241021.1711.002.(in Chinese)CHEN N Q, WANG X P, LIN G, et al. Deformation laws of soft soil deep foundation pit partitioned excavation[J/OL]. Journal of Civil and Environmental Engineering, 1-12[2024-11-06]. https://link.cnki.net/urlid/50.1218.TU.20241021.1711.002.(in Chinese) [109] 潘世强, 邓 俊. 富水砂卵石层深基坑近接建筑物安全施工控制技术研究[J]. 公路工程, 2018, 43(3): 173-178. (PAN S Q, DENG J. Study on safety control technology of deep foundation pit construction near buildings in water-soaked sand and cobble stratum[J]. Highway Engineering, 2018, 43(3): 173-178. (in Chinese) doi: 10.3969/j.issn.1674-0610.2018.03.035PAN S Q, DENG J. Study on safety control technology of deep foundation pit construction near buildings in water-soaked sand and cobble stratum[J]. Highway Engineering, 2018, 43(3): 173-178. (in Chinese) doi: 10.3969/j.issn.1674-0610.2018.03.035 [110] 高广运, 高 盟, 杨成斌, 等. 基坑施工对运营地铁隧道的变形影响及控制研究[J]. 岩土工程学报, 2010, 32(3): 453-459. (GAO G Y, GAO M, YANG C B, et al. Influence of deep excavation on deformation of operating metro tunnels and countermeasures[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 453-459. (in Chinese)GAO G Y, GAO M, YANG C B, et al. Influence of deep excavation on deformation of operating metro tunnels and countermeasures[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 453-459. (in Chinese) [111] 温淑荔. 深基坑开挖对紧邻建筑物影响分析及加固措施优化研究[J]. 现代隧道技术, 2020, 57(4): 98-103. (WEN S L. Influence of deep foundation pit excavation on adjacent buildings and optimization of reinforcement measures[J]. Modern Tunnelling Technology, 2020, 57(4): 98-103. (in Chinese)WEN S L. Influence of deep foundation pit excavation on adjacent buildings and optimization of reinforcement measures[J]. Modern Tunnelling Technology, 2020, 57(4): 98-103. (in Chinese) [112] 宫志群, 唐 聪, 龚益军, 等. 基坑及隧道群施工对邻近建筑物的叠加影响研究[J]. 地下空间与工程学报, 2020, 16(S2): 752-761. (GONG Z Q, TANG C, GONG Y J, et al. Study on the superimposed impact of foundation pit and tunnel group construction on adjacent building[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(S2): 752-761. (in Chinese)GONG Z Q, TANG C, GONG Y J, et al. Study on the superimposed impact of foundation pit and tunnel group construction on adjacent building[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(S2): 752-761. (in Chinese) [113] 何连昇, 张 俊. 基坑开挖与临近既有隧道的相互影响[J]. 沈阳建筑大学学报(自然科学版), 2014, 30(5): 826-833. (HE L S, ZHANG J. Mutual influence between the excavation of foundation pit and adjacent tunnel[J]. Journal of Shenyang Jianzhu niversity (Natural Science), 2014, 30(5): 826-833. (in Chinese) doi: 10.11717/j.issn:2095-1922.2014.05.08HE L S, ZHANG J. Mutual influence between the excavation of foundation pit and adjacent tunnel[J]. Journal of Shenyang Jianzhu niversity (Natural Science), 2014, 30(5): 826-833. doi: 10.11717/j.issn:2095-1922.2014.05.08 [114] 高利军. 邻近建筑物基坑开挖变形的特性分析及控制[J]. 工程勘察, 2022, 50(3): 14-21,78. (GAO L J. Analysis of the deformation feature and control measures of the deep excavation close to existing buildings[J]. Geotechnical Investigation & Surveying, 2022, 50(3): 14-21,78. (in Chinese) doi: 10.3969/j.issn.1000-1433.2022.3.gckc202203003GAO L J. Analysis of the deformation feature and control measures of the deep excavation close to existing buildings[J]. Geotechnical Investigation & Surveying, 2022, 50(3): 14-21,78. (in Chinese) doi: 10.3969/j.issn.1000-1433.2022.3.gckc202203003 [115] 周晓军, 刘建国. 地铁车站明挖深基坑近接既有建筑物基础的预应力锚索施工技术[J]. 施工技术(中英文), 2022, 51(1): 77-84. (ZHOU X J, LIU J G. Construction technology of prestressed cable for open-cut deep foundation excavation of subway station adjacent to existing building foundation[J]. Construction Technology, 2022, 51(1): 77-84. (in Chinese)ZHOU X J, LIU J G. Construction technology of prestressed cable for open-cut deep foundation excavation of subway station adjacent to existing building foundation[J]. Construction Technology, 2022, 51(1): 77-84. (in Chinese) [116] 吴小建, 陈峰军, 许 抒. 近邻历史保护建筑的深基坑围护结构施工技术[J]. 中国市政工程, 2010(S1): 72-73,150. (WU X J, CHEN F J, XU S. A study of construction techniques of deep foundation pit enclosure structure adjacent to historical protection buildings[J]. China Municipal Engineering, 2010(S1): 72-73,150. (in Chinese) doi: 10.3969/j.issn.1004-4655.2010.z1.032WU X J, CHEN F J, XU S. A study of construction techniques of deep foundation pit enclosure structure adjacent to historical protection buildings[J]. China Municipal Engineering, 2010(S1): 72-73,150. (in Chinese) doi: 10.3969/j.issn.1004-4655.2010.z1.032 [117] 曹晶珍, 李俊伟, 吕培印. 地铁车站深基坑施工时临近建筑物的变形控制研究[J]. 城市轨道交通研究, 2015, 18(11): 97-101. (CAO J Z, LI J W, LV P Y. Deformation control of buildings neighboring to foundation-pit construction at subway station[J]. Urban Mass Transit, 2015, 18(11): 97-101. (in Chinese)CAO J Z, LI J W, LV P Y. Deformation control of buildings neighboring to foundation-pit construction at subway station[J]. Urban Mass Transit, 2015, 18(11): 97-101. (in Chinese) [118] 王凯椿. 莞惠城际轨道交通工程深基坑施工对邻近建筑物的影响及控制分析[J]. 隧道建设, 2014, 34(4): 303-310. (WANG K C. Analysis on influence of construction of deep foundation pit on adjacent buildings: case study on GZH-5 Bid Section of Dongguan-Huizhou Inter-city Rail Transit Project[J]. Tunnel Construction, 2014, 34(4): 303-310. (in Chinese) doi: 10.3973/j.issn.1672-741X.2014.04.003WANG K C. Analysis on influence of construction of deep foundation pit on adjacent buildings: case study on GZH-5 Bid Section of Dongguan-Huizhou Inter-city Rail Transit Project[J]. Tunnel Construction, 2014, 34(4): 303-310. (in Chinese) doi: 10.3973/j.issn.1672-741X.2014.04.003 [119] 林煌超, 谢建斌, 卞荣森, 等. 基坑开挖对邻近盾构地铁隧道变形机制研究[J]. 佳木斯大学学报(自然科学版), 2017, 35(6): 950-954. (LIN H C, XIE J B, BIAN R S, et al. Study on the deformation mechanism of adjacent shield tunnel under the excavation and dewatering of the foundation pit[J]. Journal of Jiamusi University (Natural Science Edition), 2017, 35(6): 950-954. (in Chinese)LIN H C, XIE J B, BIAN R S, et al. Study on the deformation mechanism of adjacent shield tunnel under the excavation and dewatering of the foundation pit[J]. Journal of Jiamusi University (Natural Science Edition), 2017, 35(6): 950-954. (in Chinese) [120] 张治国, 徐 晨, 刘 明, 等. 考虑基坑降水开挖影响的运营隧道变形分析[J]. 中国矿业大学学报, 2015, 44(2): 241-248. (ZHANG Z G, XU C, LIU M, et al. Deformation analysis of metro tunnels considering impacts of dewatering excavation in foundation pit engineering[J]. Journal of China University of Mining & Technology, 2015, 44(2): 241-248. (in Chinese)ZHANG Z G, XU C, LIU M, et al. Deformation analysis of metro tunnels considering impacts of dewatering excavation in foundation pit engineering[J]. Journal of China University of Mining & Technology, 2015, 44(2): 241-248. (in Chinese) [121] 何绍衡, 夏唐代, 李连祥, 等. 地下水渗流对悬挂式止水帷幕基坑变形影响[J]. 浙江大学学报(工学版), 2019, 53(4): 713-723. (HE S H, XIA T D, LI L X, et al. Influence of groundwater seepage on deformation of foundation pits with suspended impervious curtains[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(4): 713-723. (in Chinese)HE S H, XIA T D, LI L X, et al. Influence of groundwater seepage on deformation of foundation pits with suspended impervious curtains[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(4): 713-723. (in Chinese) [122] 曹成勇, 彭远胜. 深厚强透水含水层地铁深基坑地下水控制方案综合比选方法[J]. 土木与环境工程学报(中英文), 2024, 46(4): 82-90. (CAO C Y, PENG Y S. Comprehensive comparison of various scenarios to groundwater control for a deep metro excavation in highly-permeable aquifers[J]. Journal of Civil and Environmental Engineering, 2024, 46(4): 82-90. (in Chinese)CAO C Y, PENG Y S. Comprehensive comparison of various scenarios to groundwater control for a deep metro excavation in highly-permeable aquifers[J]. Journal of Civil and Environmental Engineering, 2024, 46(4): 82-90. (in Chinese) [123] 杨世东, 唐艳丽, 刘庆方, 等. 基坑开挖施工对超近距离下卧既有盾构隧道的保护技术研究[J]. 隧道建设(中英文), 2017, 37(S2): 35-46. (YANG S D, TANG Y L, LIU Q F, et al. Protection technology for underlaid shield tunnel: a case study of ultra-close foundation pit excavation[J]. Tunnel Construction, 2017, 37(S2): 35-46. (in Chinese)YANG S D, TANG Y L, LIU Q F, et al. Protection technology for underlaid shield tunnel: a case study of ultra-close foundation pit excavation[J]. Tunnel Construction, 2017, 37(S2): 35-46. (in Chinese) [124] 毛朝辉, 刘国彬. 基坑开挖对下方近距离隧道的保护[J]. 浙江工业大学学报, 2005, 33(5): 534-537. (MAO Z H, LIU G B. Measures of preventing the in use tunnel disaster caused by overhead excavation[J]. Journal of Zhejiang University of Technology, 2005, 33(5): 534-537. (in Chinese) doi: 10.3969/j.issn.1006-4303.2005.05.012MAO Z H, LIU G B. Measures of preventing the in use tunnel disaster caused by overhead excavation[J]. Journal of Zhejiang University of Technology, 2005, 33(5): 534-537. (in Chinese) doi: 10.3969/j.issn.1006-4303.2005.05.012 [125] 邹家南, 杨小平, 刘庭金. 邻近地铁盾构隧道的深基坑支护分析[J]. 铁道建筑, 2013, 53(9): 63-67. (ZOU J N, YANG X P, LIU T J. Analysis of deep foundation pit support for shield tunnel adjacent to metro[J]. Railway Engineering, 2013, 53(9): 63-67. (in Chinese)ZOU J N, YANG X P, LIU T J. Analysis of deep foundation pit support for shield tunnel adjacent to metro[J]. Railway Engineering, 2013, 53(9): 63-67. [126] ZHANG H B, CHEN J J, FAN F, et al. Deformation monitoring and performance analysis on the shield tunnel influenced by adjacent deep excavations[J]. Journal of Aerospace Engineering, 2017, 30(2): B4015002. doi: 10.1061/(ASCE)AS.1943-5525.0000574 [127] 郭晓欢. 北京某深大基坑工程紧邻既有地铁车站风险分析与控制研究[D]. 北京: 北京交通大学, 2016. (GUO X H. Research on risk analysis and control of existing subway station affected by the adjacent construction of deep and large foundation pit in Beijing[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)GUO X H. Research on risk analysis and control of existing subway station affected by the adjacent construction of deep and large foundation pit in Beijing[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese) -
下载: