[1] |
桂 耀, 肖昌虎, 侯丽娜. 跨流域引调水工程规划方案优选研究——以滇中引水工程为例[J]. 中国农村水利水电, 2017(9): 63-66. (GUI Y, XIAO C H, HOU L N. The planning scheme optimization of inter-basin water transfer projects———taking the water diversion for central area of Yunnan for example[J]. China Rural Water and Hydropower, 2017(9): 63-66. (in Chinese) doi: 10.3969/j.issn.1007-2284.2017.09.014GUI Y, XIAO C H, HOU L N. The planning scheme optimization of inter-basin water transfer projects———taking the water diversion for central area of Yunnan for example[J]. China Rural Water and Hydropower, 2017(9): 63-66. (in Chinese) doi: 10.3969/j.issn.1007-2284.2017.09.014
|
[2] |
蔡正银, 张 晨, 朱 洵, 等. 高寒区长距离供水工程能力提升与安全保障技术[J]. 岩土工程学报, 2022, 44(7): 1239-1254. (CAI Z Y, ZHANG C, ZHU X, et al. Improvement of capacity and safety protection technology for long-distance water delivery projects in cold regions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1239-1254. (in Chinese) doi: 10.11779/CJGE202207005CAI Z Y, ZHANG C, ZHU X, et al. Improvement of capacity and safety protection technology for long-distance water delivery projects in cold regions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1239-1254. (in Chinese) doi: 10.11779/CJGE202207005
|
[3] |
何 君, 郦建强, 李云玲, 等. 新形势下科学推进我国调水工程规划建设的若干思考[J]. 中国水利, 2023(22): 49-53. (HE H, LI J Q, LI Y L, et al. Scientific advancements in the planning and construction of water transfer projects in China under the new situation[J]. China Water Resources, 2023(22): 49-53. (in Chinese) doi: 10.3969/j.issn.1000-1123.2023.22.012HE H, LI J Q, LI Y L, et al. Scientific advancements in the planning and construction of water transfer projects in China under the new situation[J]. China Water Resources, 2023(22): 49-53. (in Chinese) doi: 10.3969/j.issn.1000-1123.2023.22.012
|
[4] |
中华人民共和国中央人民政府. 中共中央 国务院印发《国家水网建设规划纲要》[EB/OL].(2023-05-252024-12-01]. https://www.gov.cn/zhengce/202305/content_6876214.htm. (The Central People’s Government of the People’s Republic of China. Outline development plan for national water network construction[EB/OL]. (2023-05-25)[2024-12-01] https://www.gov.cn/zhengce/202305/content_6876214.htm. (in Chinese)
|
[5] |
ZHU H H, YAN J X, LIANG W H. Challenges and development prospects of ultra-long and ultra-deep mountain tunnels[J]. Engineering, 2019, 5(3): 384-392. doi: 10.1016/j.eng.2019.04.009
|
[6] |
张小宝, 司富安, 段世委, 等. 深埋水工长隧洞主要工程地质问题与勘察经验[J]. 水利规划与设计, 2021(12): 55-60. (ZHANG X B, SI F A, DUAN S W, et al. Main engineering geological problems and survey experience of deep buried hydraulic long tunnel[J]. Water Resources Planning and Design, 2021(12): 55-60. (in Chinese) doi: 10.3969/j.issn.1672-2469.2021.12.012ZHANG X B, SI F A, DUAN S W, et al. Main engineering geological problems and survey experience of deep buried hydraulic long tunnel[J]. Water Resources Planning and Design, 2021(12): 55-60. (in Chinese) doi: 10.3969/j.issn.1672-2469.2021.12.012
|
[7] |
王旺盛, 陈长生, 王家祥, 等. 滇中引水工程香炉山深埋长隧洞主要工程地质问题[J]. 长江科学院院报, 2020, 37(9): 154-159. (WANG W S, CHEN C S, WANG J X, et al. Major engineering geological problems of Xianglushan deep-buried long tunnel in central Yunnan water diversion project[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(9): 154-159. (in Chinese) doi: 10.11988/ckyyb.20200565WANG W S, CHEN C S, WANG J X, et al. Major engineering geological problems of Xianglushan deep-buried long tunnel in central Yunnan water diversion project[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(9): 154-159. (in Chinese) doi: 10.11988/ckyyb.20200565
|
[8] |
杜小洲. 引汉济渭秦岭输水隧洞关键技术问题及其研究进展[J]. 人民黄河, 2020, 42(11): 138-142. (DU X Z. Key technical issues in Qinling water diversion tunnel of Hanjiang-to-Weihe river project and research advancements[J]. Yellow River, 2020, 42(11): 138-142. (in Chinese) doi: 10.3969/j.issn.1000-1379.2020.11.030DU X Z. Key technical issues in Qinling water diversion tunnel of Hanjiang-to-Weihe river project and research advancements[J]. Yellow River, 2020, 42(11): 138-142. (in Chinese) doi: 10.3969/j.issn.1000-1379.2020.11.030
|
[9] |
钮新强, 张传健. 复杂地质条件下跨流域调水超长深埋隧洞建设需研究的关键技术问题[J]. 隧道建设(中英文), 2019, 39(4): 523-536. (NIU X Q, ZHANG C J. Some key technical issues on construction of ultra-long deep-buried water conveyance tunnel under complex geological conditions[J]. Tunnel Construction, 2019, 39(4): 523-536. (in Chinese)NIU X Q, ZHANG C J. Some key technical issues on construction of ultra-long deep-buried water conveyance tunnel under complex geological conditions[J]. Tunnel Construction, 2019, 39(4): 523-536.
|
[10] |
杨启贵, 张传健, 颜天佑, 等. 长距离调水工程建设与安全运行集成研究及应用[J]. 岩土工程学报, 2022, 44(7): 1188-1210. (YANG Q G, ZHANG C J, YAN T Y, et al. Integrated research and application of construction and safe operation of long-distance water transfer projects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1188-1210. (in Chinese) doi: 10.11779/CJGE202207002YANG Q G, ZHANG C J, YAN T Y, et al. Integrated research and application of construction and safe operation of long-distance water transfer projects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1188-1210. (in Chinese) doi: 10.11779/CJGE202207002
|
[11] |
王文卓, 胡金鑫, 邱成虎, 等. 深埋饱和黄土隧道围岩软化效应及其控制措施[J]. 岩土工程技术, 2024, 38(6): 692-697. (WANG W Z, HU J X, QIU C H, et al. Softening effect and control measures of surrounding rock in deep buried saturated loess tunnel[J]. Geotechnical Engineering Technique, 2024, 38(6): 692-697. (in Chinese) doi: 10.3969/j.issn.1007-2993.2024.06.008WANG W Z, HU J X, QIU C H, et al. Softening effect and control measures of surrounding rock in deep buried saturated loess tunnel[J]. Geotechnical Engineering Technique, 2024, 38(6): 692-697. (in Chinese) doi: 10.3969/j.issn.1007-2993.2024.06.008
|
[12] |
张振杰. 高外水压作用下大埋深隧洞围岩稳定分析方法及工程应用[J]. 岩石力学与工程学报, 2024, 43(11): 2858. (ZHANG Z J. Analysis method and engineering application of surrounding rock stability of deep-buried tunnel under high external water pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(11): 2858. (in Chinese)ZHANG Z J. Analysis method and engineering application of surrounding rock stability of deep-buried tunnel under high external water pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(11): 2858. (in Chinese)
|
[13] |
GONG F Q, WANG Y L, LUO S. Rockburst proneness criteria for rock materials: review and new insights[J]. Journal of Central South University, 2020, 27(10): 2793-2821. doi: 10.1007/s11771-020-4511-y
|
[14] |
LUO Y, HUANG J C, WU W X, et al. Saturation effect on storage-dissipation properties and failure characteristics of red sandstone: energy mechanism of water in preventing rockburst[J]. International Journal of Coal Science & Technology, 2025, 12(1): 32.
|
[15] |
丁秀丽, 张雨霆, 黄书岭, 等. 隧洞围岩大变形机制、挤压大变形预测及应用[J]. 岩石力学与工程学报, 2023, 42(3): 521-544. (DING X L, ZHANG Y T, HUANG S L, et al. Large deformation mechanism of surrounding rock masses of tunnels, prediction method of squeezing large deformation and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 521-544. (in Chinese)DING X L, ZHANG Y T, HUANG S L, et al. Large deformation mechanism of surrounding rock masses of tunnels, prediction method of squeezing large deformation and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 521-544. (in Chinese)
|
[16] |
NIE L C, WANG C K, LIU Z Y, et al. An integrated geological and geophysical approach to identify water-rich weathered granite areas during twin tunnels construction: a case study[J]. Tunnelling and Underground Space Technology, 2023, 135: 105025. doi: 10.1016/j.tust.2023.105025
|
[17] |
NIE L C, SONG Z C, LI Z Q, et al. Ground-tunnel geological prospecting and treatment methods of small-diameter TBM crossing shallow buried water-rich tunnel: a case study[J]. Tunnelling and Underground Space Technology, 2024, 153: 106024. doi: 10.1016/j.tust.2024.106024
|
[18] |
杨 星, 张荣辉, 房宽达, 等. 盾构同步注浆浆液性能影响分析及其配比优化研究[J]. 岩土工程技术, 2021, 35(5): 336-340. (YANG X, ZHANG R H, FANG K D, et al. Study on the influence of shield synchronous grouting slurry performance and the optimization of its proportion[J]. Geotechnical Engineering Technique, 2021, 35(5): 336-340. (in Chinese) doi: 10.3969/j.issn.1007-2993.2021.05.011YANG X, ZHANG R H, FANG K D, et al. Study on the influence of shield synchronous grouting slurry performance and the optimization of its proportion[J]. Geotechnical Engineering Technique, 2021, 35(5): 336-340. (in Chinese) doi: 10.3969/j.issn.1007-2993.2021.05.011
|
[19] |
司富安, 李 坤, 段世委. TBM施工深埋水工长隧洞围岩综合分类研究[J]. 长江科学院院报, 2020, 37(8): 150-154. (SI F A, LI K, DUAN S W. Comprehensive classification of surrounding rock of deep buried long hydraulic tunnel constructed with tunnel boring machine[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(8): 150-154. (in Chinese) doi: 10.11988/ckyyb.20200567SI F A, LI K, DUAN S W. Comprehensive classification of surrounding rock of deep buried long hydraulic tunnel constructed with tunnel boring machine[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(8): 150-154. (in Chinese) doi: 10.11988/ckyyb.20200567
|
[20] |
张世殊. 水利水电深部工程地质勘察技术现状与发展趋势[J/OL]. 岩石力学与工程学报, 1-28[2025-05-08]. https://kns.cnki.net/kcms/detail/42.1397.O3.20250305.1202.004.html. (ZHANG S S. Research status and development trend of deep geological exploration techniques for hydraulic and hydropower engineering[J/OL]. Chinese Journal of Rock Mechanics and Engineering, 1-28[2025-05-08]. https://kns.cnki.net/kcms/detail/42.1397.O3.20250305.1202.004.html. (in Chinese)ZHANG S S. Research status and development trend of deep geological exploration techniques for hydraulic and hydropower engineering[J/OL]. Chinese Journal of Rock Mechanics and Engineering, 1-28[2025-05-08]. https://kns.cnki.net/kcms/detail/42.1397.O3.20250305.1202.004.html. (in Chinese)
|
[21] |
中华人民共和国水利部. 水利水电工程可行性研究报告编制规程: SL/T 618—2021[S]. 北京: 中国水利水电出版社, 2021. (Ministry of Water Resources of the People’s Republic of China. Code of preparing feasibility study reports for water and hydropower projects: SL/T 618—2021[S]. Beijing: China Water & Power Press, 2021. (in Chinese)Ministry of Water Resources of the People’s Republic of China. Code of preparing feasibility study reports for water and hydropower projects: SL/T 618—2021[S]. Beijing: China Water & Power Press, 2021. (in Chinese)
|
[22] |
吴树良, 邓争荣, 王吉亮, 等. 引江补汉工程超长输水隧洞线路地质比选[J]. 中国水利, 2022(18): 44-47. (WU S L, DENG Z R, WANG J L, et al. Geological comparison for selection of super long tunnel under the dam of the River Diversion Project from the Yangtze River to the Han River[J]. China Water Resources, 2022(18): 44-47. (in Chinese)WU S L, DENG Z R, WANG J L, et al. Geological comparison for selection of super long tunnel under the dam of the River Diversion Project from the Yangtze River to the Han River[J]. China Water Resources, 2022(18): 44-47. (in Chinese)
|
[23] |
王吉亮, 向家菠, 颜慧明, 等. 引江补汉工程输水线路工程地质选线研究[J]. 长江科学院院报, 2023, 40(5): 100-105. (WANG J L, XIANG J B, YAN H M, et al. Route selection for water diversion project from Three Gorges reservoir to Hanjiang River based on engineering geology[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(5): 100-105. (in Chinese) doi: 10.11988/ckyyb.20221280WANG J L, XIANG J B, YAN H M, et al. Route selection for water diversion project from Three Gorges reservoir to Hanjiang River based on engineering geology[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(5): 100-105. (in Chinese) doi: 10.11988/ckyyb.20221280
|
[24] |
许 琦, 向家菠, 王吉亮, 等. 黄陵断穹北缘盖层岩溶水文地质结构建立及其在深埋长隧洞工程的应用[J]. 工程勘察, 2024, 52(10): 36-43. (XU Q, XIANG J B, WANG J L, et al. Building of karst hydrogeological structures on the northeast wing of Huangling faulted dome and its application in the deep-buried long tunnel engineering[J]. Geotechnical Investigation & Surveying, 2024, 52(10): 36-43. (in Chinese)XU Q, XIANG J B, WANG J L, et al. Building of karst hydrogeological structures on the northeast wing of Huangling faulted dome and its application in the deep-buried long tunnel engineering[J]. Geotechnical Investigation & Surveying, 2024, 52(10): 36-43. (in Chinese)
|