留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄土古土壤互层下黄土剖面含水率分布修正模型研究

贺海超 南亚林 姚淼 薛君豪 王仲毅 郭鉴辉 李静 郭东欣 罗冬

贺海超, 南亚林, 姚淼, 薛君豪, 王仲毅, 郭鉴辉, 李静, 郭东欣, 罗冬. 黄土古土壤互层下黄土剖面含水率分布修正模型研究[J]. 岩土工程技术, 2025, 39(2): 167-176. doi: 10.20265/j.cnki.issn.1007-2993.2024-0575
引用本文: 贺海超, 南亚林, 姚淼, 薛君豪, 王仲毅, 郭鉴辉, 李静, 郭东欣, 罗冬. 黄土古土壤互层下黄土剖面含水率分布修正模型研究[J]. 岩土工程技术, 2025, 39(2): 167-176. doi: 10.20265/j.cnki.issn.1007-2993.2024-0575
He Haichao, Nan Yalin, Yao Miao, Xue Junhao, Wang Zhongyi, Guo Jianhui, Li Jing, Guo Dongxin, Luo Dong. Modified model of moisture content distribution of loess profile for loess paleosoil interlayer[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(2): 167-176. doi: 10.20265/j.cnki.issn.1007-2993.2024-0575
Citation: He Haichao, Nan Yalin, Yao Miao, Xue Junhao, Wang Zhongyi, Guo Jianhui, Li Jing, Guo Dongxin, Luo Dong. Modified model of moisture content distribution of loess profile for loess paleosoil interlayer[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(2): 167-176. doi: 10.20265/j.cnki.issn.1007-2993.2024-0575

黄土古土壤互层下黄土剖面含水率分布修正模型研究

doi: 10.20265/j.cnki.issn.1007-2993.2024-0575
基金项目: 陕西省四主体一联合土体中心(2022ZY2-CXJD-09;2023-YBNY-234);国家自然科学基金(52078418);陕西省重点研发计划 (2024SF-YBXM-537);未来城市建设与管理创新联合研究中心(20211177-ZKT14);西安交通大学基本科研业务费( xzd012022071);榆林市科技计划项目 (CityCXY-2020-046)
详细信息
    作者简介:

    贺海超,男,1982年生,工程硕士,高级工程师,主要从事岩土工程勘察和测试等科研与生产工作。E-mail:104865381@qq.com

    通讯作者:

    罗 冬,女,1983年生,副教授,硕士生导师,主要从事基础设施建设结构健康监测。E-mail:luodong@xjtu.edu.cn

  • 中图分类号: P642

Modified model of moisture content distribution of loess profile for loess paleosoil interlayer

  • 摘要: 为准确测量黄土古土壤互层下各土层的饱和程度,对黄土古土壤互层下黄土剖面含水率分布修正,用压力板法测得铜川地区黄土和古土壤的土壤水分特征曲线,进而用midas GTS NX软件进行非饱和渗流数值模拟,根据模拟数据建立含水率修正模型,并与现场浸水试验实测数据进行对比。研究表明:相同地质年代,不同古土壤受水分下渗的影响相对一致,但是不同地质时期,受影响的差异性变得明显;构建的含水率修正模型的计算值和实测值在黄土古土壤交接处等关键节点处的上下趋势基本一致,可以证明多层古土壤含水率模型计算的准确性和科学性。研究成果可为具有古土壤层的黄土地区含水率修正,进而提高黄土–古土壤互层地区湿陷性评价的精度提供参考。

     

  • 图  1  SWC-150型土水特征曲线压力仪

    图  2  土水特征曲线数据点线图

    图  3  各土样土水特征曲线拟合曲线

    图  4  各模型模拟体积含水率等值线

    图  5  各古土壤在不同黄土中的含水率模拟结果

    图  6  各古土壤在不同黄土中的灵敏系数模拟结果

    图  7  简化模型示意图

    图  8  L3段线的线性拟

    图  9  部分参数拟合曲线

    图  10  L2段线的线性拟合

    图  11  试验场地位置示意图

    图  12  华原村试坑鸟瞰图

    图  13  修正含水率与实测含水率对比图

    表  1  不同取土场地黄土古土壤的基本物性指标

    土样名称取土深度/m初始含水率w0/ %土粒比重Gs干密度ρd/(g·cm−3)初始孔隙比e0液限wL/ %塑限 wp/ %塑性指数 Ip
    Q2-11118.92.711.370.9528.819.29.6
    Q3-1517.22.711.281.13328.419.49
    古土壤1818.52.711.430.78827.617.210.4
    古土壤211102.71.560.73427198
    下载: 导出CSV

    表  2  VG模型中各参数拟合结果

    土样anmR2
    古土壤10.0121.0840.7740.99
    古土壤20.0120.9921.0930.99
    Q2-10.0250.9350.9200.99
    Q3-10.0371.1730.4520.99
    下载: 导出CSV

    表  3  L3线性拟合k3

    古土壤厚度/m下伏Q3黄土时k3下伏Q2黄土时k3
    0.50.01230.008
    10.02900.017
    20.03750.024
    30.04270.029
    下载: 导出CSV

    表  4  多层古土壤剖面含水率修正模型

    深度/m 土层类型 基础含水率/% 含水率修正
    古1层 古2层 古3层
    1Q3黄土ws
    2ws
    3wsSt(1, −1)
    4古土壤wsSt(2, 0)
    5Q3黄土wsSt(3, 1)
    6wsSt(3, 2)
    7ws St(3, 2)St(1, −1)
    8古土壤ws St(3, 2)St(2, 0)
    9Q3黄土ws St(3, 2)St(3, 1)
    10ws St(3, 2)St(3, 2)
    11ws St(3, 2) St(3, 2)St(1, −2)
    12ws St(3, 2) St(3, 2)St(1, −1)
    13古土壤ws St(3, 2) St(3, 2)St(2, 0)
    14Q2黄土ws St(3, 2) St(3, 2)St(3, 1)
    15ws St(3, 2) St(3, 2)St(3, 2)
    注:将每行各数相乘得到每米深度内的修正含水率。ws为饱和含水率,表达式为e0/(1+e0 );Stij)为该层土的灵敏系数;i为使用单层古土壤修正模型中的第i段表达式;j为古土壤上表面相对深度, m。
    下载: 导出CSV

    表  5  铜川某园区地层含水率修正结果

    土壤类型代表深度/m饱和含水率第1层古土壤修正第2层古土壤修正第3层古土壤修正第4层古土壤修正计算修正含水率
    Q3黄土L10~1.00.401.001.001.001.000.40
    1.0~2.00.401.001.001.001.000.40
    2.0~3.00.421.001.001.001.000.42
    3.0~4.00.431.001.001.001.000.43
    4.0~5.00.451.161.001.001.000.45
    5.0~6.00.461.321.001.001.000.46
    古土壤P16.0~7.00.461.251.001.001.000.46
    Q2黄土L27.0~8.00.411.181.001.001.000.41
    7.9~9.00.380.831.001.001.000.32
    9.0~10.00.400.891.001.001.000.36
    10.0~11.00.420.911.191.001.000.42
    11.0~12.70.380.911.371.001.000.38
    古土壤P212.7~14.00.350.911.511.001.000.35
    14.0~15.10.400.911.201.001.000.40
    Q2黄土L315.1~16.00.380.910.811.001.000.28
    16.0~17.00.370.910.851.151.000.33
    17.0~18.00.380.910.851.311.000.38
    古土壤P318.0~19.00.380.910.851.451.000.38
    19.0~20.00.380.910.851.141.000.33
    20.0~21.20.380.910.850.851.190.30
    Q2黄土L421.2~22.50.390.910.850.881.370.36
    古土壤P422.5~24.00.380.910.850.881.510.38
    24.0~24.80.360.910.850.881.200.29
    Q2黄土L524.8~26.00.370.910.850.880.810.20
    26.0~27.00.360.910.850.880.830.21
    27.0~28.00.370.910.850.880.850.21
    28.0~29.00.390.910.850.880.890.24
    29.0~30.00.380.910.850.880.930.24
    下载: 导出CSV
  • [1] HOU K, QIAN H, ZHANG Y T, et al. Seepage mechanisms and permeability differences between loess and paleosols in the critical zone of the Loess Plateau[J]. Earth Surface Processes and Landforms,2021,46(10):2044-2059. doi: 10.1002/esp.5143
    [2] 李 琳, 王家鼎, 谷 琪, 等. 古土壤层间富水对黄土场地湿陷性的影响[J]. 西北大学学报(自然科学版),2024,54(1):72-83. (LI L, WANG J D, GU Q, et al. The influence of moisture-rich interlayers in palesol strata on the collapsibility of loess terrain[J]. Journal of Northwest University (Natural Science Edition),2024,54(1):72-83. (in Chinese)

    LI L, WANG J D, GU Q, et al. The influence of moisture-rich interlayers in palesol strata on the collapsibility of loess terrain[J]. Journal of Northwest University (Natural Science Edition), 2024, 54(1): 72-83. (in Chinese)
    [3] 赵金刚, 吕远强, 晁 军, 等. 典型黄土–古土壤系列浸水渗透及湿陷变形规律[J]. 煤田地质与勘探,2020,48(3):152-159,168. (ZHAO J G, LYU Y Q, CHAO J, et al. The law of soaking infiltration and collapse deformation in typical loess-paleosol series[J]. Coal Geology & Exploration,2020,48(3):152-159,168. (in Chinese)

    ZHAO J G, LYU Y Q, CHAO J, et al. The law of soaking infiltration and collapse deformation in typical loess-paleosol series[J]. Coal Geology & Exploration, 2020, 48(3): 152-159,168. (in Chinese)
    [4] SHAO T J, WANG R J, XU Z P, et al. Permeability and groundwater enrichment characteristics of the loess-paleosol sequence in the southern Chinese Loess Plateau[J]. Water,2020,12(3):870. doi: 10.3390/w12030870
    [5] CHEN Y, QIAN H, HOU K, et al. Permeability and paleoenvironmental implications of loess-paleosol sequence from Jingyang Loess Plateau[J]. Environmental Earth Sciences,2021,80(1):18. doi: 10.1007/s12665-020-09282-y
    [6] 赵景波, 王长燕, 刘护军, 等. 陕西洛川黄土剖面上部土层水分入渗规律与含水条件研究[J]. 水文地质工程地质,2010,37(1):124-129,134. (ZHAO J B, WANG C Y, LIU H J, et al. A study of water infiltration and water-bearing condition of the L1–S4 layers in Luochuan, Shaanxi[J]. Hydrogeology & Engineering Geology,2010,37(1):124-129,134. (in Chinese) doi: 10.3969/j.issn.1000-3665.2010.01.025

    ZHAO J B, WANG C Y, LIU H J, et al. A study of water infiltration and water-bearing condition of the L1–S4 layers in Luochuan, Shaanxi[J]. Hydrogeology & Engineering Geology, 2010, 37(1): 124-129,134. (in Chinese) doi: 10.3969/j.issn.1000-3665.2010.01.025
    [7] 郁耀闯, 杨树瑶, 王长燕, 等. 宝鸡地区L1–S5黄土和古土壤水分入渗及影响因素[J]. 水土保持研究,2023,30(6):78-85. (YU Y C, YANG S Y, WANG C Y, et al. Water infiltration and influencing factors of L1–S5 loess-paleosol in Baoji region[J]. Research of Soil and Water Conservation,2023,30(6):78-85. (in Chinese)

    YU Y C, YANG S Y, WANG C Y, et al. Water infiltration and influencing factors of L1–S5 loess-paleosol in Baoji region[J]. Research of Soil and Water Conservation, 2023, 30(6): 78-85. (in Chinese)
    [8] 李培月, 李佳慧, 吴健华, 等. 黄土–古土壤互层对土壤水分运移及土体微结构的影响[J]. 水文地质工程地质,2024,51(3):1-11. (LI P Y, LI J H, WU J H, et al. Effects of loess-paleosol interbedding on soil moisture transport and soil microstructure[J]. Hydrogeology & Engineering Geology,2024,51(3):1-11. (in Chinese)

    LI P Y, LI J H, WU J H, et al. Effects of loess-paleosol interbedding on soil moisture transport and soil microstructure[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 1-11. (in Chinese)
    [9] 赵志强, 戴福初, 闵 弘, 等. 原状黄土–古土壤中水分入渗过程研究[J]. 岩土力学,2021,42(9):2611-2621. (ZHAO Z Q, DAI F C, MIN H, et al. Research on infiltration process in undisturbed loess-paleosol sequence[J]. Rock and Soil Mechanics,2021,42(9):2611-2621. (in Chinese)

    ZHAO Z Q, DAI F C, MIN H, et al. Research on infiltration process in undisturbed loess-paleosol sequence[J]. Rock and Soil Mechanics, 2021, 42(9): 2611-2621. (in Chinese)
    [10] 刘建磊, 卫童瑶, 惠寒斌, 等. 大厚度非连续湿陷性黄土浸水变形特征分析[J]. 地质力学学报,2024,30(6):921-932. (LIU J L, WEI T Y, HUI H B, et al. Analysis of soaking deformation characteristics of large-thickness discontinuous collapsible loess[J]. Journal of Geomechanics,2024,30(6):921-932. (in Chinese) doi: 10.12090/j.issn.1006-6616.2023174

    LIU J L, WEI T Y, HUI H B, et al. Analysis of soaking deformation characteristics of large-thickness discontinuous collapsible loess[J]. Journal of Geomechanics, 2024, 30(6): 921-932. (in Chinese) doi: 10.12090/j.issn.1006-6616.2023174
    [11] 黄晓波, 高冰可. 土壤水分特征曲线研究综述[J]. 农技服务, 2016, 33(4): 22-23, 27. (HUANG X B, GAO B K. A review of soil moisture characteristic curves[J]. Agricultural Technology Service, 2016, 33(4): 22-23, 27. (in Chinese)

    HUANG X B, GAO B K. A review of soil moisture characteristic curves[J]. Agricultural Technology Service, 2016, 33(4): 22-23, 27. (in Chinese)
    [12] 王 俊, 黄岁樑. 土壤水分特征曲线模型对数值模拟非饱和渗流的影响[J]. 水动力学研究与进展,2010,25(1):16-22. (WANG J, HUANG S L. Effect of soil water characteristic models on numerical modeling of unsaturated flow[J]. Chinese Journal of Hydrodynamics,2010,25(1):16-22. (in Chinese)

    WANG J, HUANG S L. Effect of soil water characteristic models on numerical modeling of unsaturated flow[J]. Chinese Journal of Hydrodynamics, 2010, 25(1): 16-22. (in Chinese)
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  10
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-07
  • 修回日期:  2025-01-12
  • 录用日期:  2025-02-14
  • 网络出版日期:  2025-04-07
  • 刊出日期:  2025-04-08

目录

    /

    返回文章
    返回