Study on Seismic Liquefaction Discrimination Method of Deep Silt in Dam Overburden
-
摘要: 以某坝基覆盖层深度19.5~31.0 m范围内深层粉土为研究对象,进行了液化可能性判别。根据土样颗粒级配进行了液化初判,对于初判可能发生液化的土样采用相对含水率法进行复判,并结合动三轴液化试验成果,采用seed法对土层液化可能性进行了复核验证。结果表明:坝基覆盖层深度19.5~31.0 m范围内的饱和粉土层存在着液化的可能。采用的判别方法和取得的成果可以为类似工程场地液化判别提供参考和借鉴。Abstract: Liquefaction discrimination was conducted in deep silt of a dam overburden within the range of 19.50~31 m. According to the particle gradation of soil samples, the initial liquefaction discrimination was accomplished. For the soil samples that can be liquefied in the initial discrimination, the relative water content method was used for the second discrimination. Combined with the results of the dynamic triaxial liquefaction test, the seed method was used to verify the possibility of soil liquefaction. The result shows that the deep silt within the range of 19.50~31 m of dam overburden may be liquefied. The method and results can provide reference for the liquefaction discrimination in the similar engineering.
-
表 1 粉土液化初判结果
土样编号 取土深度/m <5 mm
含量/%<0.005 mm
含量/%初判结果 1# 20.2~20.4 100 21.3 不液化 2# 21.4~21.6 100 19.8 不液化 3# 22.6~22.8 100 11.2 可能液化 4# 27.6~27.8 100 10.0 可能液化 5# 29.6~29.8 100 20.8 不液化 6# 26.5~26.7 100 19.5 不液化 7# 28.5~28.7 100 16.8 可能液化 8# 30.5~30.7 100 22.6 不液化 9# 21.5~21.7 100 9.9 可能液化 10# 24.5~24.7 100 7.7 可能液化 11# 26.4~26.6 100 10.1 可能液化 12# 30.0~30.2 100 15.0 可能液化 13# 23.5~23.7 100 13.5 可能液化 14# 28.0~28.2 100 6.8 可能液化 表 2 粉土液化相对含水率法液化复判结果
土样编号 取土深度/m 相对含水率 复判结果 3# 22.6~22.8 0.93 可能液化 4# 27.6~27.8 1.13 可能液化 7# 28.5~28.7 0.99 可能液化 9# 21.5~21.7 0.93 可能液化 10# 24.5~24.7 0.81 11# 26.4~26.6 0.77 12# 30.0~30.2 0.84 13# 23.5~23.7 1.00 可能液化 14# 28.0~28.2 0.79 表 3 液化试验方案
土样编号 取土深度/m 干密度/(g·cm−3) 围压/kPa 3# 22.6~22.8 1.47 232 4# 27.6~27.8 1.35 279 7# 28.5~28.7 1.47 288 9# 21.5~21.7 1.46 222 10# 24.5~24.7 1.59 250 11# 26.4~26.6 1.60 268 12# 30.0~30.2 1.50 302 13# 23.5~23.7 1.39 240 14# 28.0~28.2 1.58 283 表 4 抗液化剪应力计算结果
土样
编号抗液化剪应力比 自重应力/kPa 抗液化剪应力/kPa 12次 20次 30次 12次 20次 30次 3# 0.180 0.158 0.145 232 23.8 20.9 19.2 4# 0.150 0.129 0.119 279 23.9 20.5 18.9 7# 0.190 0.167 0.154 288 31.2 27.4 25.3 9# 0.190 0.169 0.166 222 24.0 21.4 21.0 10# 0.260 0.233 0.218 250 37.1 33.2 31.1 11# 0.269 0.251 0.225 268 41.1 38.3 34.4 12# 0.190 0.170 0.158 302 32.7 29.3 27.2 13# 0.167 0.146 0.137 240 22.8 20.0 18.7 14# 0.276 0.250 0.235 283 44.5 40.3 37.9 表 5 地震剪应力计算结果
土样编号 取土深度/m 有效自重应力/kPa 地震剪应力
/kPa3# 22.6~22.8 232 29.8 4# 27.6~27.8 279 31.8 7# 28.5~28.7 288 32.1 9# 21.5~21.7 222 29.3 10# 24.5~24.7 250 30.8 11# 26.4~26.6 268 31.5 12# 30.0~30.2 302 32.3 13# 23.5~23.7 240 30.2 14# 28.0~28.2 283 31.9 表 6 动三轴液化判别结果
土样
编号FL 判别结果 7级(12次) 7.5级(20次) 8级(30次) 3# 1.25 1.43 1.56 可能液化 4# 1.33 1.55 1.68 可能液化 7# 1.09 1.24 1.36 可能液化 9# 1.22 1.37 1.39 可能液化 10# 0.83 0.93 0.99 不液化 11# 0.77 0.82 0.92 不液化 12# 0.99 1.10 1.19 可能液化 13# 1.32 1.51 1.61 可能液化 14# 0.72 0.79 0.84 不液化 -
[1] SEED H B,IDRISS I M,ARANGO I. Evaluation of liquefaction potential using field performance data[J]. Journal of Geotechnical Engineering, ASCE,1983,(3):105-134. [2] 陈国兴. 岩土地震工程学[M]. 北京: 科学出版社, 2007. [3] GB 50011—2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010. [4] 张夏滔,胡云壮,王 栋. 曹妃甸吹填粉细砂液化特性研究J]. 中国海洋大学学报,2019,49(12):75-80. [5] 陈文化,张 弥. 广州地铁砂土层液化判别[J]. 土木工程学报,2006,39(3):118-122. doi: 10.3321/j.issn:1000-131X.2006.03.019 [6] 陈文化,孙 谋,刘明丽,等. 南京砂的结构特性与地铁地基液化判别[J]. 岩土力学,2003,24(5):755-758. doi: 10.3969/j.issn.1000-7598.2003.05.018 [7] 杜广印,罗 涛,程 远,等. 基于CPTU土类指数的标贯值液化判别[J]. 东南大学学报(自然科学版),2017,47(4):812-817. doi: 10.3969/j.issn.1001-0505.2017.04.028 [8] 周相国,邢贵发,苏玉国. 天津地区饱和粉土地震液化的试验研究[J]. 岩土力学,2009,30(12):3813-3819. doi: 10.3969/j.issn.1000-7598.2009.12.044 [9] 李 彬,张浩鸣,冀宝荣. 锡林浩特市市区地震砂土液化研究[J]. 华北地震科学,2019,37(1):66-71. doi: 10.3969/j.issn.1003-1375.2019.01.011 [10] 黄雅虹,吕悦军,荣棉水,等. 关于深层砂土液化判定方法的探讨−以港珠澳特大桥水下隧道工程场地为例[J]. 岩土工程学报,2012,31(4):856-864. [11] 王 薇,李 恒,徐利军. 基于剪切波速的深层砂土地震液化研究[J]. 大地测量与地球动力学,2019,39(1):93-97. [12] 陈存礼, 胡再强, 谢定义. 某坝基深埋砂层地震液化评判[J], 岩土力学, 2006, 27(S2): 983-987. [13] 刘建达,陈国兴,刘雪珠. 某长江大桥深度超过15米的砂土层液化势的综合评价[J]. 地震工程与工程振动,2007,27(5):151-159. doi: 10.3969/j.issn.1000-1301.2007.05.023 [14] 刘 林, 杨庆山, 张雪枫. 沭河特大桥场地深层砂土液化势评价[C]//第八届全国地震工程学术会议论文集(Ⅰ). 2010. [15] 袁晓铭,曹振中,孙 锐. 汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报,2009,28(6):1288-1296. doi: 10.3321/j.issn:1000-6915.2009.06.026 [16] GB 18036—2015 中国地震动参数区划图[S]. 北京: 中国标准出版社, 2015. [17] GB 50487—2008 水利水电工程地质勘察规范[S]. 北京: 中国计划出版社, 2008. [18] SEED H B,IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1971,97(9):1249-1273. doi: 10.1061/JSFEAQ.0001662 [19] SL 237—1999 土工试验规程[S]. 北京: 中国水利水电出版社, 1999. [20] IWASAKI T,TATSUOKA F,TOKITA K,等. 地震时地盘液状化の程度の预测について[J]. 土と基础,1980,28(4):23-29. -
下载: