Citation: | Liu Xuecheng, Ren Jiyu, Ou Qiang, Wang Chunyan, Liu Shimin, Ding Xuanming. Shaking table test on seismic performance of energy-dissipating pile-anchor structure under El Centro seismic waves[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(1): 122-131. doi: 10.20265/j.cnki.issn.1007-2993.2023-0874 |
[1] |
黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报,2008,16(6):730-741. (HUANG R Q, PEI X J, LI T B. Basic characteristics and formation mechanism of the largest scale landslide at Dagungdao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology,2008,16(6):730-741. (in Chinese)
HUANG R Q, PEI X J, LI T B. Basic characteristics and formation mechanism of the largest scale landslide at Dagungdao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 730-741. (in Chinese)
|
[2] |
宋 章, 张广泽, 蒋良文, 等. 川藏铁路主要地质灾害特征及地质选线探析[J]. 铁道标准设计,2016,60(1):14-19. (SONG Z, ZHANG G Z, JIANG L W, et al. Analysis of the characteristics of major geological disasters and geological alignment of Sichuan-Tibet railway[J]. Railway Standard Design,2016,60(1):14-19. (in Chinese)
SONG Z, ZHANG G Z, JIANG L W, et al. Analysis of the characteristics of major geological disasters and geological alignment of Sichuan-Tibet railway[J]. Railway Standard Design, 2016, 60(1): 14-19. (in Chinese)
|
[3] |
邢爱国, 吴志坚, 陈龙珠, 等. 汶川地震在甘肃省的次生典型边坡灾害特征[J]. 西北地震学报,2010,32(1):95-98. (XING A G, WU Z J, CHEN L Z, et al. Characteristics of secondary typical slope disaster in Gansu province induced by the Wenchuan earthquake[J]. China Earthquake Engineering Journal,2010,32(1):95-98. (in Chinese)
XING A G, WU Z J, CHEN L Z, et al. Characteristics of secondary typical slope disaster in Gansu province induced by the Wenchuan earthquake[J]. China Earthquake Engineering Journal, 2010, 32(1): 95-98. (in Chinese)
|
[4] |
殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报,2008,16(4):433-444. (YIN Y P. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology,2008,16(4):433-444. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.04.001
YIN Y P. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433-444. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.04.001
|
[5] |
程时涛, 何浩祥, 程 扬, 等. 基于非完美维修和韧性提升理念的震损结构性能恢复策略[J/OL]. (2023-10-17)[2024-11-14]. http://kns.cnki.net/kcms/detail/11.2595.O3.20231016.1155.012.html (CHENG S T, HE H X, CHENG Y, et al. Performance recovery strategy of seismic-damaged structures upon imperfect maintenance and resilience improvement[J/OL]. (2023-10-17)[2024-11-14]. http://kns.cnki.net/kcms/detail/11.2595.O3.20231016.1155.012.html.(in Chinese)
CHENG S T, HE H X, CHENG Y, et al. Performance recovery strategy of seismic-damaged structures upon imperfect maintenance and resilience improvement[J/OL]. (2023-10-17)[2024-11-14]. http://kns.cnki.net/kcms/detail/11.2595.O3.20231016.1155.012.html.(in Chinese)
|
[6] |
邓 鹏, 周锦鹏, 黄 频. 锈蚀钢筋混凝土框架结构的抗震韧性评估[J]. 地震工程与工程振动,2023,43(3):23-34. (DENG P, ZHOU J P, HUANG P. Evaluation of seismic resilience of corroded reinforced concrete frame structure[J]. Earthquake Engineering and Engineering Dynamics,2023,43(3):23-34. (in Chinese)
DENG P, ZHOU J P, HUANG P. Evaluation of seismic resilience of corroded reinforced concrete frame structure[J]. Earthquake Engineering and Engineering Dynamics, 2023, 43(3): 23-34. (in Chinese)
|
[7] |
石 晟, 杜东升, 王曙光, 等. 高层钢结构不同减震加固方案的抗震韧性评估[J]. 土木工程学报,2020,53(4):71-82. (SHI S, DU D S, WANG S G, et al. Assessment of reinforcement scheme for a high-rise steel structure based on seismic resilience and reinforcement benefit ratio[J]. China Civil Engineering Journal,2020,53(4):71-82. (in Chinese)
SHI S, DU D S, WANG S G, et al. Assessment of reinforcement scheme for a high-rise steel structure based on seismic resilience and reinforcement benefit ratio[J]. China Civil Engineering Journal, 2020, 53(4): 71-82. (in Chinese)
|
[8] |
邱灿星, 杜修力. 自复位结构的研究进展和应用现状[J]. 土木工程学报,2021,54(11):11-26. (QIU C X, DU X L. A state-of-the-art review on the research and application of self-centering structures[J]. China Civil Engineering Journal,2021,54(11):11-26. (in Chinese)
QIU C X, DU X L. A state-of-the-art review on the research and application of self-centering structures[J]. China Civil Engineering Journal, 2021, 54(11): 11-26. (in Chinese)
|
[9] |
谢 强, 杨振宇, 何 畅. 带减震支座的T型开关设备地震响应分析及试验研究[J]. 地震工程与工程振动,2019,39(1):54-61. (XIE Q, YANG Z Y, HE C. Seismic responses analysis and experimental study of T-shape switch equipment with base isolation[J]. Earthquake Engineering and Engineering Dynamics,2019,39(1):54-61. (in Chinese)
XIE Q, YANG Z Y, HE C. Seismic responses analysis and experimental study of T-shape switch equipment with base isolation[J]. Earthquake Engineering and Engineering Dynamics, 2019, 39(1): 54-61. (in Chinese)
|
[10] |
BATHURST R J, ZARNANI S, GASKIN A. Shaking table testing of geofoam seismic buffers[J]. Soil Dynamics and Earthquake Engineering,2007,27(4):324-332. doi: 10.1016/j.soildyn.2006.08.003
|
[11] |
PAI L F, WU H G. Shaking table test of comparison and optimization of seismic performance of slope reinforcement with multi-anchor piles[J]. Soil Dynamics and Earthquake Engineering,2021,145:106737. doi: 10.1016/j.soildyn.2021.106737
|
[12] |
康迎杰, 彭凌云, 刘庆宽, 等. 近断层脉冲地震作用下调谐型阻尼器对隔震结构的减震控制[J/OL]. (2023-06-05)[2024-11-15]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230602.1647.012.html (KANG Y J, PENG L Y, LIU Q K, et al. Seismic control of tuned dampers for seismic isolated structures under near-fault pulse-like ground motions[J]. (2023-06-05)[2024-11-15]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230602.1647.012.html.(in Chinese)
KANG Y J, PENG L Y, LIU Q K, et al. Seismic control of tuned dampers for seismic isolated structures under near-fault pulse-like ground motions[J]. (2023-06-05)[2024-11-15]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230602.1647.012.html.(in Chinese)
|
[13] |
信 任, 张 强, 黄 炜, 等. 黏滞阻尼器加固大空间混凝土框架结构振动台试验研究[J]. 建筑结构学报,2023,44(3):20-29. (XIN R, ZHANG Q, HUANG W, et al. Shaking table test of large-space RC frame reinforced by viscous dampers[J]. Journal of Building Structures,2023,44(3):20-29. (in Chinese)
XIN R, ZHANG Q, HUANG W, et al. Shaking table test of large-space RC frame reinforced by viscous dampers[J]. Journal of Building Structures, 2023, 44(3): 20-29. (in Chinese)
|
[14] |
刘彦辉, 谭 平, 金建敏, 等. 地震作用下全浮漂大跨斜拉桥耗能减震控制研究[J]. 振动与冲击,2015,34(8):1-6. (LIU Y H, TAN P, JIN J M, et al. Energy dissipation control for long span cable-stayed bridges as a full-floating system under earthquake[J]. Journal of Vibration and Shock,2015,34(8):1-6. (in Chinese)
LIU Y H, TAN P, JIN J M, et al. Energy dissipation control for long span cable-stayed bridges as a full-floating system under earthquake[J]. Journal of Vibration and Shock, 2015, 34(8): 1-6. (in Chinese)
|
[15] |
彭 晓, 黄晓斌, 阙海群, 等. ECC-BFRP加固地铁车站抗震性能研究[J]. 地震工程与工程振动,2022,42(6):184-191. (PENG X, HUANG X B, QUE H Q, et al. Seismic performance of subway station reinforced by the ECC-BFRP[J]. Earthquake Engineering and Engineering Dynamics,2022,42(6):184-191. (in Chinese)
PENG X, HUANG X B, QUE H Q, et al. Seismic performance of subway station reinforced by the ECC-BFRP[J]. Earthquake Engineering and Engineering Dynamics, 2022, 42(6): 184-191. (in Chinese)
|
[16] |
袁 方, 赵修远. FRP筋-钢筋增强ECC-混凝土组合柱抗震性能研究[J]. 工程力学,2021,38(8):55-65,144. (YUAN F, ZHAO X Y. Seismic behaviors of hybrid FRP-steel reinforced ECC-concrete composite columns[J]. Engineering Mechanics,2021,38(8):55-65,144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0532
YUAN F, ZHAO X Y. Seismic behaviors of hybrid FRP-steel reinforced ECC-concrete composite columns[J]. Engineering Mechanics, 2021, 38(8): 55-65,144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0532
|
[17] |
韩 军, 翟永林, 张 晖, 等. 底部采用高性能纤维增强混凝土的RC剪力墙结构抗震性能分析[J]. 建筑结构学报,2021,42(S1):47-54. (HAN J, ZHAI Y L, ZHANG H, et al. Seismic performance analysis of RC shear wall structure with fiber-reinforced concrete in plastic hinge region[J]. Journal of Building Structures,2021,42(S1):47-54. (in Chinese)
HAN J, ZHAI Y L, ZHANG H, et al. Seismic performance analysis of RC shear wall structure with fiber-reinforced concrete in plastic hinge region[J]. Journal of Building Structures, 2021, 42(S1): 47-54. (in Chinese)
|
[18] |
BUCKINGHAM E. On physically similar systems; illustrations of the use of dimensional equations[J]. Physical Review,1914,4(4):345-376. doi: 10.1103/PhysRev.4.345
|
[19] |
LIAN J, DING X M, ZHANG L. Shaking table test on seismic response of an accumulation landslide reinforced by pile-plate retaining wall based on the time-frequency analysis method[J]. Journal of Central South University,2023,30(5):1710-1721. doi: 10.1007/s11771-023-5323-7
|
[20] |
RAYAMAJHI D, TAMURA S, KHOSRAVI M, et al. Dynamic centrifuge tests to evaluate reinforcing mechanisms of soil-cement columns in liquefiable sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2015,141(6):04015015. doi: 10.1061/(ASCE)GT.1943-5606.0001298
|
[21] |
KAMAI R, BOULANGER R W. Characterizing localization processes during liquefaction using inverse analyses of instrumentation arrays[M]//HATZOR Y H, SULEM J, VARDOULAKIS I. Meso-Scale Shear Physics in Earthquake and Landslide Mechanics. London: Routledge, 2009: 219-238.
|