Wang Huinian, Kang Bo, Xie Enlin, Li Pengfei, Pang Yuekui, Li Bing. Influence caused by reinforcement range of connecting passage on main tunnels[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(1): 25-34. doi: 10.20265/j.cnki.issn.1007-2993.2024-0252
Citation: Wang Huinian, Kang Bo, Xie Enlin, Li Pengfei, Pang Yuekui, Li Bing. Influence caused by reinforcement range of connecting passage on main tunnels[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(1): 25-34. doi: 10.20265/j.cnki.issn.1007-2993.2024-0252

Influence caused by reinforcement range of connecting passage on main tunnels

doi: 10.20265/j.cnki.issn.1007-2993.2024-0252
  • Received Date: 2024-06-06
  • Accepted Date: 2024-08-29
  • Rev Recd Date: 2024-08-12
  • Publish Date: 2025-02-21
  • The influence caused by the reinforcement range of the connecting passage on the main tunnel during the construction process of the connecting passage of subway shield tunnels was investigated. Through numerical simulation, the influence of the reinforcement range of the stratum on the mechanical behavior of the main tunnel segment, such as the overall deformation of the main tunnel segment, the stress and displacement of the special segment, and the stress state of the bolts between the special and ordinary segments, was comprehensively analyzed. The results show that: (1) Ground reinforcement can significantly reduce the maximum tensile stress of special segments, but it will significantly increase the maximum compressive stress, and the control effect on lateral expansion displacement and vertical convergence displacement was limited. (2) Proper reinforcement can significantly reduce the maximum tensile stress of the bolt, greatly reduce the top settlement displacement of the transverse channel, and slightly reduce the bottom uplift displacement, which is conducive to the overall deformation control of the transverse channel. However, when the reinforcement range is too large, the maximum tensile stress of the bolt rises significantly. Considering the factors such as the economy and construction effect, full-length reinforcement should be avoided.

     

  • [1]
    卫佳莺, 马永政, 莫振泽, 等. 机械法联络通道T接施工地层隆沉变化特征研究——以无锡地铁3号线顶管法联络通道T接施工示范工程为例[J]. 隧道建设(中英文),2020,40(S2):136-143. (WEI J Y, MA Y Z, MO Z Z, et al. Study on influence of ground settlement in T-joint connecting passage with mechanical pipe jacking method: With the example of the demonstration project of T-joint construction of connecting passage with pipe jacking method in Wuxi Metro Line 3[J]. Tunnel Construction,2020,40(S2):136-143. (in Chinese)

    WEI J Y, MA Y Z, MO Z Z, et al. Study on influence of ground settlement in T-joint connecting passage with mechanical pipe jacking method: With the example of the demonstration project of T-joint construction of connecting passage with pipe jacking method in Wuxi Metro Line 3[J]. Tunnel Construction, 2020, 40(S2): 136-143. (in Chinese)
    [2]
    胡 威, 黄 强, 李海波, 等. 机械法联络通道施工对T接部位沉降影响的实测与数值分析[J]. 施工技术(中英文),2022,51(13):68-74,80. (HU W, HUANG Q, LI H B, et al. Actual measurement and numerical analysis of influence of mechanical connection channel construction on settlement of T-junction[J]. Construction Technology,2022,51(13):68-74,80. (in Chinese)

    HU W, HUANG Q, LI H B, et al. Actual measurement and numerical analysis of influence of mechanical connection channel construction on settlement of T-junction[J]. Construction Technology, 2022, 51(13): 68-74,80. (in Chinese)
    [3]
    丁剑敏, 董子博, 莫振泽, 等. 顶管法T接隧道现场试验研究分析[J]. 隧道建设(中英文),2020,40(1):28-34. (DING J M, DONG Z B, MO Z Z, et al. Field Experimental study on t-connected tunnel with pipe jacking method[J]. Tunnel Construction,2020,40(1):28-34. (in Chinese)

    DING J M, DONG Z B, MO Z Z, et al. Field Experimental study on t-connected tunnel with pipe jacking method[J]. Tunnel Construction, 2020, 40(1): 28-34. (in Chinese)
    [4]
    刘明高, 马连友, 陆 平, 等. 超大直径盾构隧道机械法施工联络通道结构力学响应分析[J]. 特种结构,2021,38(5):106-111. (LIU G M, MA L Y, LU P, et al. Structural mechanical response impact of cross-passages mechanical construction on super-large diameter shield tunnel[J]. Special Structures,2021,38(5):106-111. (in Chinese)

    LIU G M, MA L Y, LU P, et al. Structural mechanical response impact of cross-passages mechanical construction on super-large diameter shield tunnel[J]. Special Structures, 2021, 38(5): 106-111. (in Chinese)
    [5]
    赵泽昌, 霍永鹏, 李河山, 等. 机械法开挖地铁联络通道的施工力学响应分析[J]. 市政技术,2022,40(1):1-6. (ZHAO Z C, HUO Y P, LI H S, et al. Analysis of mechanical response of metro connecting channel by mechanical construction[J]. Municipal Engineering Technology,2022,40(1):1-6. (in Chinese)

    ZHAO Z C, HUO Y P, LI H S, et al. Analysis of mechanical response of metro connecting channel by mechanical construction[J]. Municipal Engineering Technology, 2022, 40(1): 1-6. (in Chinese)
    [6]
    张 磊, 李 帆, 张秉鹤, 等. 机械法联络通道主隧道特殊管片结构安全性数值分析[J]. 施工技术(中英文),2022,51(10):29-34. (ZHANG L, LI F, ZHANG B H, et al. Numerical analysis on safety of special segment structure of main tunnel in mechanical connecting aisle[J]. Construction Technology,2022,51(10):29-34. (in Chinese)

    ZHANG L, LI F, ZHANG B H, et al. Numerical analysis on safety of special segment structure of main tunnel in mechanical connecting aisle[J]. Construction Technology, 2022, 51(10): 29-34. (in Chinese)
    [7]
    朱瑶宏, 高一民, 董子博, 等. 盾构法T接隧道结构受力现场试验研究——以宁波轨道交通3号线联络通道为例[J]. 隧道建设(中英文),2019,39(11):1759-1768. (ZHU Y H, GAO Y M, DONG Z B, et al. Field test on structural mechanism of T-connected shield tunnel: a case study of connecting passage on Ningbo Metro Line No. 3[J]. Tunnel Construction,2019,39(11):1759-1768. (in Chinese)

    ZHU Y H, GAO Y M, DONG Z B, et al. Field test on structural mechanism of T-connected shield tunnel: a case study of connecting passage on Ningbo Metro Line No. 3[J]. Tunnel Construction, 2019, 39(11): 1759-1768. (in Chinese)
    [8]
    王 军, 李海峰, 李克金, 等. 盾构隧道联络通道钢管片快速开口施工技术研究[J]. 隧道建设(中英文),2021,41(S2):551-557. (WANG J, LI H F, LI K J, et al. Rapid opening technology of steel pipe sheet for connecting gallery of shield tunnel[J]. Tunnel Construction,2021,41(S2):551-557. (in Chinese)

    WANG J, LI H F, LI K J, et al. Rapid opening technology of steel pipe sheet for connecting gallery of shield tunnel[J]. Tunnel Construction, 2021, 41(S2): 551-557. (in Chinese)
    [9]
    张付林, 刘正好, 朱瑶宏, 等. 机械法联络通道T接部位受力特性及弱化分析[J]. 岩土工程学报,2022,44(S2):116-119. (ZHANG F L, LIU Z H, ZHU Y H, et al. Stress characteristics and weakening analysis of T-joint of connection passage by mechanical excavation method[J]. Chinese Journal of Geotechnical Engineering,2022,44(S2):116-119. (in Chinese)

    ZHANG F L, LIU Z H, ZHU Y H, et al. Stress characteristics and weakening analysis of T-joint of connection passage by mechanical excavation method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 116-119. (in Chinese)
    [10]
    杨佳栋, 郑荣跃, 郑诗怡, 等. 机械法联络通道T接部位接收端切削模型试验研究[J]. 施工技术(中英文),2022,51(3):12-17. (YANG J D, ZHENG R Y, ZHENG S Y, et al. Experimental study on cutting model of receiving end of T-joint part of mechanical connection channels[J]. Construction Technology,2022,51(3):12-17. (in Chinese)

    YANG J D, ZHENG R Y, ZHENG S Y, et al. Experimental study on cutting model of receiving end of T-joint part of mechanical connection channels[J]. Construction Technology, 2022, 51(3): 12-17. (in Chinese)
    [11]
    顾沉颖. NOMJS联络通道施工新工艺研究[J]. 隧道建设,2015,35(7):716-720. (GU C Y. NOMJS: A new technology for construction of connection passages of shield-bored tunnels[J]. Tunnel Construction,2015,35(7):716-720. (in Chinese) doi: 10.3973/j.issn.1672-741X.2015.07.016

    GU C Y. NOMJS: A new technology for construction of connection passages of shield-bored tunnels[J]. Tunnel Construction, 2015, 35(7): 716-720. (in Chinese) doi: 10.3973/j.issn.1672-741X.2015.07.016
    [12]
    柳 献, 郭振坤, 伍鹏李, 等. 通道开口对超大直径盾构法车站结构力学行为影响研究及结构优化[J]. 土木工程学报,2021,54(7):114-122. (LIU X, GUO Z K, WU P L, et al. Study on influence of passage opening on the mechanical behavior of super large diameter shield tunnel station structure and structural optimization[J]. China Civil Engineering Journal,2021,54(7):114-122. (in Chinese)

    LIU X, GUO Z K, WU P L, et al. Study on influence of passage opening on the mechanical behavior of super large diameter shield tunnel station structure and structural optimization[J]. China Civil Engineering Journal, 2021, 54(7): 114-122. (in Chinese)
    [13]
    王 龙. 盾构隧道与联络通道交叉部位管片力学行为研究[D]. 石家庄: 石家庄铁道大学, 2018. (WANG L. The mechanical behavior study of intersecting segment of shield tunnel and contact channel[D]. Shijiazhuang: Shijiazhuang Railway University, 2018. (in Chinese)

    WANG L. The mechanical behavior study of intersecting segment of shield tunnel and contact channel[D]. Shijiazhuang: Shijiazhuang Railway University, 2018. (in Chinese)
    [14]
    LU P, YUAN D J, JIN D L, et al. Centrifugal model tests on the structural response of the shield tunnel when constructing cross passages by mechanical methods[J]. Tunnelling and Underground Space Technology,2022,128:104621. doi: 10.1016/j.tust.2022.104621
    [15]
    张明聚, 康 博, 李鹏飞, 等. 反拉式顶管法施工联络通道对地铁盾构隧道力学性能影响[J]. 隧道建设(中英文),2024,44(6):1165-1173. (ZHANG M J, KANG B, LI P F, et al. Influence of cross-passage construction using front-traction pipe jacking method on mechanical properties of metro shield tunnel[J]. Tunnel Construction,2024,44(6):1165-1173. (in Chinese)

    ZHANG M J, KANG B, LI P F, et al. Influence of cross-passage construction using front-traction pipe jacking method on mechanical properties of metro shield tunnel[J]. Tunnel Construction, 2024, 44(6): 1165-1173. (in Chinese)
  • Relative Articles

    [1]Zhang Jiangtao, Pu Zhenhua, Zhang Yudong, Li Quanchao, Jiang Jie, Wei Dengtao. Influence of shallow tunnel construction on adjacent pile foundation and reinforcement measures[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(1): 55-62. doi: 10.20265/j.cnki.issn.1007-2993.2023-0794
    [2]Li Lin, Xie Jinhong, Yang Shangchuan. Numerical Simulation and Laboratory Tests of Unloading Stress Path of Fly Ash Stratum Tunnel Excavation[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(5): 584-591. doi: 10.3969/j.issn.1007-2993.2024.05.013
    [3]Wu Yongzhe, Jin Yijie, Zhang Zhiyu, Wang Yanzi, Yang Ping. Numerical Simulation and Deformation Control of Shield Tunneling Through Soft Soil Layer Pre-reinforcement[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(1): 22-29. doi: 10.3969/j.issn.1007-2993.2024.01.004
    [4]Tian Lulu, Zhang Zhi, Guo Yongfa. Foundation Force and Grouting Reinforcement of Central Separate Wall in Shallow Buried Multi-arch Tunnel[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(3): 284-290. doi: 10.3969/j.issn.1007-2993.2023.03.005
    [5]Zan Wenbo, Zhong Yujian, Wang Enbo, Qian Ruolin. Numerical Simulation on Optimization of Support System for a Tunnel through Debris Flow Deposits[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(1): 47-52. doi: 10.3969/j.issn.1007-2993.2023.01.009
    [6]Hu Jing, He Zhijian, Wang Yiyang, Luo Xuedong. Interaction Analysis of New Shield Tunnel Passing Through Existing Tunnel in Short Distance[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2022, 36(1): 16-21. doi: 10.3969/j.issn.1007-2993.2022.01.003
    [7]Zhang Qinxi, Wei Meng, Wang Chengming. Numerical Simulation of Groundwater Seepage in Suspended[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2021, 35(3): 146-150,156. doi: 10.3969/j.issn.1007-2993.2021.03.002
    [8]Luo Kang, Xu Jing, Zheng Yuhui. Influence Evaluation of Existing Road and Metro Tunnel Deformation during Shield Tunnel Construction[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2018, 32(5): 247-250. doi: 10.3969/j.issn.1007-2993.2018.05.007
    [9]Huang Hui. Numerical Simulation of Tunnel Deformation in Clay Induced by Normal Faulting[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2016, 30(6): 286-289,292. doi: 10.3969/j.issn.1007-2993.2016.06.005
    [10]Zhou Chen, Li Baoqiang, Wang Jian. Three-dimensional Numerical Simulation Study of CFG Pile Composite Foundation Settlement[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2015, 29(3): 118-121,131. doi: 10.369.j.issn.1007-2993-2015.03.003
    [11]YAN Li-ming, LIU Xiao-yong, LIU Bao-shi. Field Test and Numerical Simulation of Soft Soil Foundation Strengthened by Vacuum Preloading[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2015, 29(4): 173-178. doi: 10.3969/j.issn.1007-2993.2015.04.003
    [12]Zhou Yuqi, Liu Bo. Simulation and Field Measurements for Combination Support of Soil Nailing and Pile-anchor[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2013, 27(4): 188-190,200. doi: 10.3969/j.issn.1007-2993.2013.04.007
    [13]Liu Xiujun. Numerical Simulation of High Filled Embankment on Slope Soft Foundation[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2011, 25(6): 307-311. doi: 10.3969/j.issn.1007-2993.2011.06.009
    [14]Lin Xingchao, Wang Yujie, Xu Nengxiong. Numerical Simulation of “Wedge” at Left Abutment of Jinping First Stage Hydropower Station[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2009, 23(2): 55-59.
    [15]Luo Ruiping, Chen Baoguo. Theoretical Analysis and Numerical Simulation of Embankment Reinforced With Geosynthetics and Pile-wall[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2009, 23(3): 150-154. doi: 10.3969/j.issn.1007-2993.2009.03.011
    [16]Zhao Chunyan, Hao Zhe. 3D Simulation Study on Excavation Process of Big-span Road Tunnel[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2009, 23(5): 258-262. doi: 10.3969/j.issn.1007-2993.2009.05.010
    [17]Zhang Qinxi, Fan Shaofeng, Wang Lei. Measurements and Numerical Simulation of Stress in Anchors of Tucheng Project[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2008, 22(2): 67-70.
    [18]Xu Chong, Li Yanqing, Jiang Ribo. Slope Stability Evaluation Based on GIS and Numerical Simulation[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2008, 22(2): 71-74.
    [19]ZHANG Wei, XIAO Ming. Study on Numerical Simulation of Seepage of Underground Engineering and Its Application[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2005, 19(1): 13-16.
    [20]Wang Yong. Numerical Simulation on Tunnel Construction and Security Analysis of the Lining Structure Strength[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2004, 18(5): 258-262.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.6 %FULLTEXT: 17.6 %META: 69.2 %META: 69.2 %PDF: 13.2 %PDF: 13.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %China: 1.1 %China: 1.1 %San Jose: 6.6 %San Jose: 6.6 %北京: 12.1 %北京: 12.1 %南京: 2.2 %南京: 2.2 %厦门: 1.1 %厦门: 1.1 %哥伦布: 1.1 %哥伦布: 1.1 %唐山: 1.1 %唐山: 1.1 %宣城: 2.2 %宣城: 2.2 %常德: 1.1 %常德: 1.1 %广州: 3.3 %广州: 3.3 %张家口: 16.5 %张家口: 16.5 %成都: 1.1 %成都: 1.1 %扬州: 1.1 %扬州: 1.1 %杭州: 3.3 %杭州: 3.3 %济南: 2.2 %济南: 2.2 %石家庄: 4.4 %石家庄: 4.4 %芒廷维尤: 12.1 %芒廷维尤: 12.1 %芝加哥: 5.5 %芝加哥: 5.5 %西宁: 5.5 %西宁: 5.5 %运城: 3.3 %运城: 3.3 %邯郸: 1.1 %邯郸: 1.1 %郑州: 5.5 %郑州: 5.5 %重庆: 1.1 %重庆: 1.1 %长春: 1.1 %长春: 1.1 %其他ChinaSan Jose北京南京厦门哥伦布唐山宣城常德广州张家口成都扬州杭州济南石家庄芒廷维尤芝加哥西宁运城邯郸郑州重庆长春

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views (62) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return