| Citation: | MA Jianliang, ZHANG Zishan, LI Jianguang, LIU Xin, JIE Yuxin. Intelligent identification of landslide region based on MobileNet network[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2026, 40(1): 18-25. doi: 10.20265/j.cnki.issn.1007-2993.2024-0295 |
| [1] |
WANG H J, ZHANG L M, YIN K S, et al. Landslide identification using machine learning[J]. Geoscience Frontiers, 2021, 12(1): 351-364. doi: 10.1016/j.gsf.2020.02.012
|
| [2] |
巨袁臻, 许 强, 金时超, 等. 使用深度学习方法实现黄土滑坡自动识别[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1747-1755. (JU Y Z, XU Q, JIN S C, et al. Automatic object detection of loess landslide based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. (in Chinese)
JU Y Z, XU Q, JIN S C, et al. Automatic object detection of loess landslide based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. (in Chinese)
|
| [3] |
王 涛. 遥感目标识别的轻量化深度学习方法研究[D]. 成都: 成都理工大学, 2022. (WANG T. Research on lightweight deep learning method for remote sensing object[D]. Chengdu: Chengdu University of Technology, 2022. (in Chinese)
WANG T. Research on lightweight deep learning method for remote sensing object[D]. Chengdu: Chengdu University of Technology, 2022. (in Chinese)
|
| [4] |
毛佳琪. 基于对抗性DeepLabV3+算法的滑坡识别[D]. 成都: 成都理工大学, 2023. (MAO J Q. Landslide identification based on the adversarial DeepLabV3+ algorithm[D]. Chengdu: Chengdu University of Technology, 2023. (in Chinese)
MAO J Q. Landslide identification based on the adversarial DeepLabV3+ algorithm[D]. Chengdu: Chengdu University of Technology, 2023. (in Chinese)
|
| [5] |
DONG A N, DOU J, LI C D, et al. Accelerating cross-scene co-seismic landslide detection through progressive transfer learning and lightweight deep learning strategies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4410213.
|
| [6] |
JIANG Z Y, WANG M, LIU K. Comparisons of convolutional neural network and other machine learning methods in landslide susceptibility assessment: a case study in Pingwu[J]. Remote Sensing, 2023, 15(3): 798. doi: 10.3390/rs15030798
|
| [7] |
蔡浩杰, 韩海辉, 张雨莲, 等. 基于地形特征融合的卷积神经网络滑坡识别[J]. 地球科学与环境学报, 2022, 44(3): 568-579. (CAI H J, HAN H H, ZHANG Y L, et al. Convolutional neural network landslide recognition based on terrain feature fusion[J]. Journal of Earth Sciences and Environment, 2022, 44(3): 568-579. (in Chinese)
CAI H J, HAN H H, ZHANG Y L, et al. Convolutional neural network landslide recognition based on terrain feature fusion[J]. Journal of Earth Sciences and Environment, 2022, 44(3): 568-579. (in Chinese)
|
| [8] |
高秉海, 何 毅, 张立峰, 等. 顾及InSAR形变的CNN滑坡易发性动态评估——以刘家峡水库区域为例[J]. 岩石力学与工程学报, 2023, 42(2): 450-465. (GAO B H, HE Y, ZHANG L F, et al. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation: a case study of Liujiaxia reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 450-465. (in Chinese)
GAO B H, HE Y, ZHANG L F, et al. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation: a case study of Liujiaxia reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 450-465. (in Chinese)
|
| [9] |
赵占骜, 王继周, 毛 曦, 等. 多维CNN耦合的滑坡易发性评价方法[J]. 武汉大学学报(信息科学版), 2024, 49(8): 1466-1481. (ZHAO Z A, WANG J Z, MAO X, et al. A multi-dimensional CNN coupled landslide susceptibility assessment method[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1466-1481. (in Chinese)
ZHAO Z A, WANG J Z, MAO X, et al. A multi-dimensional CNN coupled landslide susceptibility assessment method[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1466-1481. (in Chinese)
|
| [10] |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
|
| [11] |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 833-851.
|
| [12] |
曾 超, 曹振宇, 苏凤环, 等. 四川及周边滑坡泥石流灾害高精度航空影像及解译数据集(2008-2020年)[J]. 中国科学数据: 中英文网络版, 2022, 7(2): 195-205. (Zeng C, Cao Z Y, Su F H, et al. High-precision aerial image and interpretation dataset of landslide and debris flow disasters in Sichuan and its surrounding areas (2008–2020)[J]. China Scientific Data (Online in Chinese and English), 2022, 7(2): 195-205. (in Chinese) doi: 10.11922/noda.2021.0005.zh
Zeng C, Cao Z Y, Su F H, et al. High-precision aerial image and interpretation dataset of landslide and debris flow disasters in Sichuan and its surrounding areas (2008–2020)[J]. China Scientific Data (Online in Chinese and English), 2022, 7(2): 195-205. doi: 10.11922/noda.2021.0005.zh
|
| [13] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
| [14] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2017: 4278-4284.
|