Volume 40 Issue 1
Feb.  2026
Turn off MathJax
Article Contents
MA Jianliang, ZHANG Zishan, LI Jianguang, LIU Xin, JIE Yuxin. Intelligent identification of landslide region based on MobileNet network[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2026, 40(1): 18-25. doi: 10.20265/j.cnki.issn.1007-2993.2024-0295
Citation: MA Jianliang, ZHANG Zishan, LI Jianguang, LIU Xin, JIE Yuxin. Intelligent identification of landslide region based on MobileNet network[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2026, 40(1): 18-25. doi: 10.20265/j.cnki.issn.1007-2993.2024-0295

Intelligent identification of landslide region based on MobileNet network

doi: 10.20265/j.cnki.issn.1007-2993.2024-0295
  • Received Date: 2024-06-27
  • Accepted Date: 2025-08-25
  • Rev Recd Date: 2025-08-14
  • Publish Date: 2026-02-06
  • Conventional landslide cataloging and statistical analysis predominantly rely on manual field surveys, which are characterized by inefficiency and the potential for omitting certain areas. Currently, mainstream slope cataloging techniques based on image recognition typically necessitate high-performance equipment and incur substantial model training costs, thereby hindering their efficient application in on-site rapid screening scenarios. This study incorporates the MobileNet lightweight model and leverages the DeepLabV3 architecture to realize rapid intelligent identification and boundary localization of landslides in aerial photographic imagery. In comparison with traditional convolutional neural network (CNN) image segmentation approaches, the proposed method can achieve an accuracy exceeding 90% within 10% of the training duration required by conventional schemes. This renders it more adept at satisfying engineering demands for the rapid intelligent recognition of landslides and makes it suitable for the rapid screening and cataloging of landslide points across large-scale regions.

     

  • loading
  • [1]
    WANG H J, ZHANG L M, YIN K S, et al. Landslide identification using machine learning[J]. Geoscience Frontiers, 2021, 12(1): 351-364. doi: 10.1016/j.gsf.2020.02.012
    [2]
    巨袁臻, 许 强, 金时超, 等. 使用深度学习方法实现黄土滑坡自动识别[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1747-1755. (JU Y Z, XU Q, JIN S C, et al. Automatic object detection of loess landslide based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. (in Chinese)

    JU Y Z, XU Q, JIN S C, et al. Automatic object detection of loess landslide based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. (in Chinese)
    [3]
    王 涛. 遥感目标识别的轻量化深度学习方法研究[D]. 成都: 成都理工大学, 2022. (WANG T. Research on lightweight deep learning method for remote sensing object[D]. Chengdu: Chengdu University of Technology, 2022. (in Chinese)

    WANG T. Research on lightweight deep learning method for remote sensing object[D]. Chengdu: Chengdu University of Technology, 2022. (in Chinese)
    [4]
    毛佳琪. 基于对抗性DeepLabV3+算法的滑坡识别[D]. 成都: 成都理工大学, 2023. (MAO J Q. Landslide identification based on the adversarial DeepLabV3+ algorithm[D]. Chengdu: Chengdu University of Technology, 2023. (in Chinese)

    MAO J Q. Landslide identification based on the adversarial DeepLabV3+ algorithm[D]. Chengdu: Chengdu University of Technology, 2023. (in Chinese)
    [5]
    DONG A N, DOU J, LI C D, et al. Accelerating cross-scene co-seismic landslide detection through progressive transfer learning and lightweight deep learning strategies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4410213.
    [6]
    JIANG Z Y, WANG M, LIU K. Comparisons of convolutional neural network and other machine learning methods in landslide susceptibility assessment: a case study in Pingwu[J]. Remote Sensing, 2023, 15(3): 798. doi: 10.3390/rs15030798
    [7]
    蔡浩杰, 韩海辉, 张雨莲, 等. 基于地形特征融合的卷积神经网络滑坡识别[J]. 地球科学与环境学报, 2022, 44(3): 568-579. (CAI H J, HAN H H, ZHANG Y L, et al. Convolutional neural network landslide recognition based on terrain feature fusion[J]. Journal of Earth Sciences and Environment, 2022, 44(3): 568-579. (in Chinese)

    CAI H J, HAN H H, ZHANG Y L, et al. Convolutional neural network landslide recognition based on terrain feature fusion[J]. Journal of Earth Sciences and Environment, 2022, 44(3): 568-579. (in Chinese)
    [8]
    高秉海, 何 毅, 张立峰, 等. 顾及InSAR形变的CNN滑坡易发性动态评估——以刘家峡水库区域为例[J]. 岩石力学与工程学报, 2023, 42(2): 450-465. (GAO B H, HE Y, ZHANG L F, et al. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation: a case study of Liujiaxia reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 450-465. (in Chinese)

    GAO B H, HE Y, ZHANG L F, et al. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation: a case study of Liujiaxia reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 450-465. (in Chinese)
    [9]
    赵占骜, 王继周, 毛 曦, 等. 多维CNN耦合的滑坡易发性评价方法[J]. 武汉大学学报(信息科学版), 2024, 49(8): 1466-1481. (ZHAO Z A, WANG J Z, MAO X, et al. A multi-dimensional CNN coupled landslide susceptibility assessment method[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1466-1481. (in Chinese)

    ZHAO Z A, WANG J Z, MAO X, et al. A multi-dimensional CNN coupled landslide susceptibility assessment method[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1466-1481. (in Chinese)
    [10]
    SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
    [11]
    CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 833-851.
    [12]
    曾 超, 曹振宇, 苏凤环, 等. 四川及周边滑坡泥石流灾害高精度航空影像及解译数据集(2008-2020年)[J]. 中国科学数据: 中英文网络版, 2022, 7(2): 195-205. (Zeng C, Cao Z Y, Su F H, et al. High-precision aerial image and interpretation dataset of landslide and debris flow disasters in Sichuan and its surrounding areas (2008–2020)[J]. China Scientific Data (Online in Chinese and English), 2022, 7(2): 195-205. (in Chinese) doi: 10.11922/noda.2021.0005.zh

    Zeng C, Cao Z Y, Su F H, et al. High-precision aerial image and interpretation dataset of landslide and debris flow disasters in Sichuan and its surrounding areas (2008–2020)[J]. China Scientific Data (Online in Chinese and English), 2022, 7(2): 195-205. doi: 10.11922/noda.2021.0005.zh
    [13]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
    [14]
    SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2017: 4278-4284.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (27) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return