Citation: | Xie Tiansheng, Zheng Zhiming, Hao Dejun, Wang Jun, Yu Xinchen, Liu Yazhen, Zhang Xinyi. Durability of HEPF fluid-solidified lightweight soil[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(5): 766-774. doi: 10.20265/j.cnki.issn.1007-2993.2024-0399 |
[1] |
ZHANG H B, WANG J, WANG C, et al. Using foamed concrete layer to optimize the design of pavement and subgrade structures: from the perspectives economy and durability[J]. Arabian Journal for Science and Engineering, 2023, 48(10): 12859-12874. doi: 10.1007/s13369-023-07606-1
|
[2] |
LIU M P, WANG J, WANG C, et al. Stress-solid materials-voids interaction of foamed concrete in isotropic compression[J]. Construction and Building Materials, 2022, 358: 129468. doi: 10.1016/j.conbuildmat.2022.129468
|
[3] |
牛金龙, 施卫星. 房屋建筑顶层采用橡胶支承的消能减震[J]. 建筑结构, 2002, 32(6): 63-65. (NIU J L, SHI W X. Reduction vibration with rubber shock absorber under top storey in the building[J]. Building Structure, 2002, 32(6): 63-65. (in Chinese)
NIU J L, SHI W X. Reduction vibration with rubber shock absorber under top storey in the building[J]. Building Structure, 2002, 32(6): 63-65. (in Chinese)
|
[4] |
SHI M H, YIN G S, ZHANG W Q, et al. Study on key parameters and design methods for the density-mix proportion of rubber-foamed concrete[J]. Buildings, 2024, 14(8): 2468. doi: 10.3390/buildings14082468
|
[5] |
DAMIANI R M, SONG Y, LANGE D A. Effect of waste rubber inclusion on the microstructure and mechanical performance of low-density foam concrete[J]. Journal of Materials in Civil Engineering, 2024, 36(7): 04024168. doi: 10.1061/JMCEE7.MTENG-16750
|
[6] |
WANG R, GAO P W, TIAN M H, et al. Experimental study on mechanical and waterproof performance of lightweight foamed concrete mixed with crumb rubber[J]. Construction and Building Materials, 2019, 209: 655-664. doi: 10.1016/j.conbuildmat.2019.03.157
|
[7] |
BENAZZOUK A, DOUZANE O, MEZREB K, et al. Physico-mechanical properties of aerated cement composites containing shredded rubber waste[J]. Cement and Concrete Composites, 2006, 28(7): 650-657. doi: 10.1016/j.cemconcomp.2006.05.006
|
[8] |
王亚威. 轻质混凝土耐久性及其提升技术试验研究[D]. 成都: 西南交通大学, 2017. (WANG Y W. Experimental study on durability and improvement techniques for the lightweight concrete[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
WANG Y W. Experimental study on durability and improvement techniques for the lightweight concrete[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
|
[9] |
BATOOL F, BINDIGANAVILE V. Evaluation of thermal conductivity of cement-based foam reinforced with polypropylene fibers[J]. Materials and Structures, 2020, 53(1): 13. doi: 10.1617/s11527-020-1445-7
|
[10] |
JAFFAL A N, HILAL A A, MAHMOUD A S, et al. Investigating the possibility of producing fiber reinforced foamed concrete for structural applications[J]. AIP Conference Proceedings, 2024, 3009(1): 030088.
|
[11] |
BAYRAKTAR O Y, KAPLAN G, GENCEL O, et al. Physico-mechanical, durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag[J]. Construction and Building Materials, 2021, 288: 123128. doi: 10.1016/j.conbuildmat.2021.123128
|
[12] |
KAZMI S M S, MUNIR M J, WU Y F, et al. Effect of different aggregate treatment techniques on the freeze-thaw and sulfate resistance of recycled aggregate concrete[J]. Cold Regions Science and Technology, 2020, 178: 103126. doi: 10.1016/j.coldregions.2020.103126
|
[13] |
王立新, 范飞飞, 汪 珂, 等. 地铁车站不同减震层的减震机理及性能分析[J]. 铁道标准设计, 2022, 66(5): 131-139. (WANG L X, FAN F F, WANG K, et al. Damping mechanism and performance analysis of different shock absorption layers in metro station[J]. Railway Standard Design, 2022, 66(5): 131-139. (in Chinese)
WANG L X, FAN F F, WANG K, et al. Damping mechanism and performance analysis of different shock absorption layers in metro station[J]. Railway Standard Design, 2022, 66(5): 131-139. (in Chinese)
|
[14] |
ELTAYEB E, MA X, ZHUGE Y, et al. Influence of rubber particles on the properties of foam concrete[J]. Journal of Building Engineering, 2020, 30: 101217. doi: 10.1016/j.jobe.2020.101217
|
[15] |
米天煜. 废胶粉泡沫混凝土设计及疲劳性能研究[D]. 赣州: 江西理工大学, 2023. (MI T Y. Design and fatigue properties of waste rubber powder foamconcrete[D]. Ganzhou: Jiangxi University of Science and Technology, 2023. (in Chinese)
MI T Y. Design and fatigue properties of waste rubber powder foamconcrete[D]. Ganzhou: Jiangxi University of Science and Technology, 2023. (in Chinese)
|
[16] |
吴 昊, 龙广成, 杨 恺, 等. PE纤维与细橡胶颗粒对泡沫混凝土弯曲韧性的影响[J]. 建筑材料学报, 2024, 27(3): 206-214. (WU H, LONG G C, YANG K, et al. Effects of PE fiber and fine rubber particles on flexural toughness of foam concrete[J]. Journal of Building Materials, 2024, 27(3): 206-214. (in Chinese) doi: 10.3969/j.issn.1007-9629.2024.03.003
WU H, LONG G C, YANG K, et al. Effects of PE fiber and fine rubber particles on flexural toughness of foam concrete[J]. Journal of Building Materials, 2024, 27(3): 206-214. (in Chinese) doi: 10.3969/j.issn.1007-9629.2024.03.003
|
[17] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 蒸压加气混凝土性能试验方法: GB/T 11969—2008[S]. 北京: 中国标准出版社, 2009. (General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. Test methods of autoclaved aerated concrete: GB/T 11969—2008[S]. Beijing: China Standard Press, 2009. (in Chinese)
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. Test methods of autoclaved aerated concrete: GB/T 11969—2008[S]. Beijing: China Standard Press, 2009. (in Chinese)
|
[18] |
中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2024[S]. 北京: 中国建筑工业出版社. (Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2024[S]. Beijing: China Architecture & Building Press. (in Chinese)
Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2024[S]. Beijing: China Architecture & Building Press. (in Chinese)
|
[19] |
姚义胜. 基于泡沫轻质土复合路基的半刚性路面结构优化及动力响应研究[D]. 济南: 山东大学, 2021. (YAO Y S. Semi-rigid pavement structure optimization and dynamic response study based on foam lightweight soil composite subgrade[D]. Jinan: Shandong University, 2021. (in Chinese)
YAO Y S. Semi-rigid pavement structure optimization and dynamic response study based on foam lightweight soil composite subgrade[D]. Jinan: Shandong University, 2021. (in Chinese)
|