| Citation: | Kuang Yan, Zhang Chaochao, Zhu Bitang. Experimental study on influence of dry density and temperature on uniaxial compression characteristics of frozen sand[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(6): 907-914. doi: 10.20265/j.cnki.issn.1007-2993.2024-0446 |
| [1] |
陈 帆, 王迎超, 郑顺华. 地铁隧道涌水涌砂诱发地面塌陷的大型模型试验研究[J]. 土木工程学报, 2023, 56(11): 174-183. (CHEN F, WANG Y C, ZHENG S H, et al. Large-scale model experiment of ground collapse induced by water and sand gushing in subway tunnels[J]. China Civil Engineering Journal, 2023, 56(11): 174-183. (in Chinese)
CHEN F, WANG Y C, ZHENG S H, et al. Large-scale model experiment of ground collapse induced by water and sand gushing in subway tunnels[J]. China Civil Engineering Journal, 2023, 56(11): 174-183. (in Chinese)
|
| [2] |
华丽晶. 国内外基于标贯的砂土液化判别方法研究[J]. 铁道工程学报, 2020, 37(8): 92-97. (HUA L J. Research on the methods of sand liquefaction assessment based on standard penetration test in domestic and foreign[J]. Journal of Railway Engineering Society, 2020, 37(8): 92-97. (in Chinese) doi: 10.3969/j.issn.1006-2106.2020.08.018
HUA L J. Research on the methods of sand liquefaction assessment based on standard penetration test in domestic and foreign[J]. Journal of Railway Engineering Society, 2020, 37(8): 92-97. (in Chinese) doi: 10.3969/j.issn.1006-2106.2020.08.018
|
| [3] |
王昭栋, 王自法, 李兆焱, 等. 基于机器学习−网格搜索优化的砂土液化预测[J]. 振动与冲击, 2024, 43(5): 82-93. (WANG Z D, WANG Z F, LI Z Y, et al. Prediction of sandy soil liquefaction based on machine learning-GridSearchCV[J]. Journal of Vibration and Shock, 2024, 43(5): 82-93. (in Chinese)
WANG Z D, WANG Z F, LI Z Y, et al. Prediction of sandy soil liquefaction based on machine learning-GridSearchCV[J]. Journal of Vibration and Shock, 2024, 43(5): 82-93. (in Chinese)
|
| [4] |
张三定, 夏银飞, 马贵生, 等. 武汉地铁二号线越江隧道勘察与施工关键问题[J]. 地下空间与工程学报, 2013, 9(4): 914-918. (ZHANG S D, XIA Y F, MA G S, et al. Reconnaissance and construction key issues for the cross-river tunnel of Wuhan subway line No. 2[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(4): 914-918. (in Chinese)
ZHANG S D, XIA Y F, MA G S, et al. Reconnaissance and construction key issues for the cross-river tunnel of Wuhan subway line No. 2[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(4): 914-918. (in Chinese)
|
| [5] |
王延廷, 王 磊, 李方政, 等. 双线冻结隧道下穿车站冻胀特性模型试验与工程实测[J]. 工程科学与技术, 2022, 54(6): 157-165. (WANG Y T, WANG L, LI F Z, et al. Experiment and engineering measurement of frost heave characteristics of the frozen double-track tunnel underpass an operation station[J]. Advanced Engineering Sciences, 2022, 54(6): 157-165. (in Chinese)
WANG Y T, WANG L, LI F Z, et al. Experiment and engineering measurement of frost heave characteristics of the frozen double-track tunnel underpass an operation station[J]. Advanced Engineering Sciences, 2022, 54(6): 157-165. (in Chinese)
|
| [6] |
陈湘生. 冻结法几个关键问题及在地下空间近接工程中最新应用[J]. 隧道建设, 2015, 35(12): 1243-1251. (CHEN X S. Several key points of artificial ground freezing method and its latest application in China[J]. Tunnel Construction, 2015, 35(12): 1243-1251. (in Chinese) doi: 10.3973/j.issn.1672-741X.2015.12.002
CHEN X S. Several key points of artificial ground freezing method and its latest application in China[J]. Tunnel Construction, 2015, 35(12): 1243-1251. (in Chinese) doi: 10.3973/j.issn.1672-741X.2015.12.002
|
| [7] |
刘勤龙, 李 旭, 姚兆明, 等. 冻土强度特性及其主控因素综述[J]. 冰川冻土, 2023, 45(3): 1092-1104. (LIU Q L, LI X, YAO Z M, et al. Strength characteristics of frozen soil and the main controlling factors: a review[J]. Journal of Glaciology and Geocryology, 2023, 45(3): 1092-1104. (in Chinese)
LIU Q L, LI X, YAO Z M, et al. Strength characteristics of frozen soil and the main controlling factors: a review[J]. Journal of Glaciology and Geocryology, 2023, 45(3): 1092-1104. (in Chinese)
|
| [8] |
WANG D Y, SHAO B, QI J L, et al. Study on strain localization of frozen sand based on uniaxial compression test and discrete element simulation[J]. Cold Regions Science and Technology, 2024, 223: 104221. doi: 10.1016/j.coldregions.2024.104221
|
| [9] |
XU X T, WANG Y B, YIN Z H, et al. Effect of temperature and strain rate on mechanical characteristics and constitutive model of frozen Helin loess[J]. Cold Regions Science and Technology, 2017, 136: 44-51. doi: 10.1016/j.coldregions.2017.01.010
|
| [10] |
黄 星, 李东庆, 明 锋, 等. 冻土的单轴抗压、抗拉强度特性试验研究[J]. 冰川冻土, 2016, 38(5): 1346-1352. (HUANG X, LI D Q, MING F, et al. Experimental study of the compressive and tensile strengths of artificial frozen soil[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1346-1352. (in Chinese)
HUANG X, LI D Q, MING F, et al. Experimental study of the compressive and tensile strengths of artificial frozen soil[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1346-1352. (in Chinese)
|
| [11] |
门建兵. 某冻土区矿山冰冻尾砂充填研究[J]. 金属矿山, 2023(12): 23-27. (MEN J B. Experimental study on frozen tailings filling in a permafrost zone mine[J]. Metal Mine, 2023(12): 23-27. (in Chinese)
MEN J B. Experimental study on frozen tailings filling in a permafrost zone mine[J]. Metal Mine, 2023(12): 23-27. (in Chinese)
|
| [12] |
陈雨漫, 林 斌. 冻结黏土单轴力学性能试验及蠕变模型研究[J]. 低温工程, 2021(4): 70-76. (CHEN Y M, LIN B. Study on uniaxial mechanical properties and creep model of frozen clay[J]. Cryogenics, 2021(4): 70-76. (in Chinese) doi: 10.3969/j.issn.1000-6516.2021.04.013
CHEN Y M, LIN B. Study on uniaxial mechanical properties and creep model of frozen clay[J]. Cryogenics, 2021(4): 70-76. (in Chinese) doi: 10.3969/j.issn.1000-6516.2021.04.013
|
| [13] |
LI H P, ZHU Y L, ZHANG J B, et al. Effects of temperature, strain rate and dry density on compressive strength of saturated frozen clay[J]. Cold Regions Science and Technology, 2004, 39(1): 39-45. doi: 10.1016/j.coldregions.2004.01.001
|
| [14] |
王泽成, 李栋伟, 张潮潮, 等. 考虑含水率对人工冻结红黏土力学特性的影响[J]. 地质科技通报, 2022, 41(6): 287-293. (WANG Z C, LI D W, ZHANG C C, et al. Effect of water content on the mechanical properties of artificially frozen red clay[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 287-293. (in Chinese)
WANG Z C, LI D W, ZHANG C C, et al. Effect of water content on the mechanical properties of artificially frozen red clay[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 287-293. (in Chinese)
|
| [15] |
牛亚强, 赖远明, 王 旭, 等. 初始含水率对冻结粉质黏土变形和强度的影响规律研究[J]. 岩土力学, 2016, 37(2): 499-506. (NIU Y Q, LAI Y M, WANG X, et al. Research on influences of initial water content on deformation and strength behaviors of frozen silty clay[J]. Rock and Soil Mechanics, 2016, 37(2): 499-506. (in Chinese)
NIU Y Q, LAI Y M, WANG X, et al. Research on influences of initial water content on deformation and strength behaviors of frozen silty clay[J]. Rock and Soil Mechanics, 2016, 37(2): 499-506. (in Chinese)
|
| [16] |
孙钦杰, 李栋伟, 王伸远. 不同含水量的冻结砂土单轴抗压强度研究[J]. 煤炭技术, 2015, 34(5): 86-88. (SUN Q J, LI D W, WANG S Y, et al. Research on uniaxial compressive strength of frozen sand containing salt with different water contents[J]. Coal Technology, 2015, 34(5): 86-88. (in Chinese)
SUN Q J, LI D W, WANG S Y, et al. Research on uniaxial compressive strength of frozen sand containing salt with different water contents[J]. Coal Technology, 2015, 34(5): 86-88. (in Chinese)
|
| [17] |
高明星, 李小丰, 刘文俊, 等. 压实度和含水率对冻土性质的影响[J]. 内蒙古农业大学学报, 2012, 33(3): 186-189. (GAO M X, LI X F, LIU W J, et al. Influence on compactness and water content to frozen soil properties[J]. Journal of Inner Mongolia Agricultural University, 2012, 33(3): 186-189. (in Chinese)
GAO M X, LI X F, LIU W J, et al. Influence on compactness and water content to frozen soil properties[J]. Journal of Inner Mongolia Agricultural University, 2012, 33(3): 186-189. (in Chinese)
|
| [18] |
马文鑫, 张勇敢, 刘斯宏, 等. 干密度和温度对冻结膨胀土单轴压缩特性影响的试验研究[J]. 冰川冻土, 2022, 44(2): 515-523. (MA W X, ZHANG Y G, LIU S H, et al. Experimental study on the influence of dry density and temperature on the uniaxial compression characteristics of frozen expansive soil[J]. Journal of Glaciology and Geocryology, 2022, 44(2): 515-523. (in Chinese)
MA W X, ZHANG Y G, LIU S H, et al. Experimental study on the influence of dry density and temperature on the uniaxial compression characteristics of frozen expansive soil[J]. Journal of Glaciology and Geocryology, 2022, 44(2): 515-523. (in Chinese)
|
| [19] |
牛江宇, 靳鹏伟, 李栋伟, 等. 冻结盐渍砂土单轴强度特性研究[J]. 冰川冻土, 2015, 37(2): 428-433. (NIU J Y, JIN P W, LI D W, et al. Study of the uniaxial compressive strength of frozen saline sandy soil[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 428-433. (in Chinese)
NIU J Y, JIN P W, LI D W, et al. Study of the uniaxial compressive strength of frozen saline sandy soil[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 428-433. (in Chinese)
|
| [20] |
魏作安, 杨永浩, 徐佳俊, 等. 人工冻结尾矿力学特性单轴压缩试验研究[J]. 东北大学学报(自然科学版), 2016, 37(1): 123-126,142. (WEI Z A, YANG Y H, XU J J, et al. Experimental study on the mechanical properties of frozen tailings by uniaxial compression tests[J]. Journal of Northeastern University (Natural Science), 2016, 37(1): 123-126,142. (in Chinese) doi: 10.3969/j.issn.1005-3026.2016.01.026
WEI Z A, YANG Y H, XU J J, et al. Experimental study on the mechanical properties of frozen tailings by uniaxial compression tests[J]. Journal of Northeastern University (Natural Science), 2016, 37(1): 123-126,142. (in Chinese) doi: 10.3969/j.issn.1005-3026.2016.01.026
|
| [21] |
LI Q L, ZHANG D J, LI P J, et al. The small-strain stiffness of frozen clay soils at different temperatures and initial water contents: experimental study and predicted model[J]. Cold Regions Science and Technology, 2023, 215: 103986. doi: 10.1016/j.coldregions.2023.103986
|
| [22] |
蔡正银, 吴志强, 黄英豪, 等. 冻土单轴抗压强度影响因素的试验研究[J]. 冰川冻土, 2015, 37(4): 1002-1008. (CAI Z Y, WU Z Q, HUANG Y H, et al. Experimental study on the factors influencing the uniaxial compressive strength of frozen soil[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 1002-1008. (in Chinese)
CAI Z Y, WU Z Q, HUANG Y H, et al. Experimental study on the factors influencing the uniaxial compressive strength of frozen soil[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 1002-1008. (in Chinese)
|
| [23] |
姜自华, 姚兆明, 陈军浩. 含砂率和含水率对人工冻土单轴抗压强度的影响[J]. 矿业研究与开发, 2016, 36(12): 47-50. (JIANG Z H, YAO Z M, CHEN J H. Influence of sand ratio and water content on uniaxial compressive strength of artificial frozen soil[J]. Mining Research and Development, 2016, 36(12): 47-50. (in Chinese)
JIANG Z H, YAO Z M, CHEN J H. Influence of sand ratio and water content on uniaxial compressive strength of artificial frozen soil[J]. Mining Research and Development, 2016, 36(12): 47-50. (in Chinese)
|
| [24] |
章宇成, 马芹永. 含水率对冻结砂土抗压强度影响的试验与分析[J]. 建井技术, 2022, 43(5): 49-53,42. (ZHANG Y C, MA Q Y. Test and analysis on moisture content rate effected to compressive strength of freezing sandy soil[J]. Mine Construction Technology, 2022, 43(5): 49-53,42. (in Chinese)
ZHANG Y C, MA Q Y. Test and analysis on moisture content rate effected to compressive strength of freezing sandy soil[J]. Mine Construction Technology, 2022, 43(5): 49-53,42. (in Chinese)
|
| [25] |
李兆宇, 张 滨. 冻结膨胀土应力-应变关系试验研究[J]. 冰川冻土, 2014, 36(4): 902-906. (LI Z Y, ZHANG B. Experimental study of stress-stain relationships of frozen expansive soil[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 902-906. (in Chinese)
LI Z Y, ZHANG B. Experimental study of stress-stain relationships of frozen expansive soil[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 902-906. (in Chinese)
|
| [26] |
赖远明, 程红彬, 高志华, 等. 冻结砂土的应力-应变关系及非线性莫尔强度准则[J]. 岩石力学与工程学报, 2007, 26(8): 1612-1617. (LAI Y M, CHENG H B, GAO Z H, et al. Stress-strain relationships and nonlinear Mohr strength criterion of frozen sand clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1612-1617. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.08.011
LAI Y M, CHENG H B, GAO Z H, et al. Stress-strain relationships and nonlinear Mohr strength criterion of frozen sand clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1612-1617. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.08.011
|