| Citation: | LI Xiangyang, LÜ Kun, YANG Xu, ZHANG Hui, LIU Hao. Meso structure analysis of fluid-solidified soil with different materials under freeze-thaw cycles[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2026, 40(1): 141-150. doi: 10.20265/j.cnki.issn.1007-2993.2024-0448 |
| [1] |
李明月, 陈少军, 郑 巍, 等. 深基坑狭窄肥槽预拌流态固化土回填施工技术[J]. 建筑施工, 2024, 46(2): 169-172. (LI M Y, CHEN S J, ZHENG W, et al. Backfill construction technology of deep foundation excavation narrow trench premixed fluidized solidified soil[J]. Building Construction, 2024, 46(2): 169-172. (in Chinese)
LI M Y, CHEN S J, ZHENG W, et al. Backfill construction technology of deep foundation excavation narrow trench premixed fluidized solidified soil[J]. Building Construction, 2024, 46(2): 169-172. (in Chinese)
|
| [2] |
李 敏, 朱晏礼, 李 磊, 等. 基坑肥槽液态固化拌和土回填技术[J]. 安装, 2023(S2): 90-91. (LI M, ZHU Y L, LI L, et al. Technology of liquid curing mixing soil backfill for foundation pit extra-excavated area[J]. Installation, 2023(S2): 90-91. (in Chinese)
LI M, ZHU Y L, LI L, et al. Technology of liquid curing mixing soil backfill for foundation pit extra-excavated area[J]. Installation, 2023(S2): 90-91. (in Chinese)
|
| [3] |
刘佃勇, 马成刚, 唐 勇, 等. 预拌流态水泥土在沟槽回填中的应用技术研究[J]. 建筑技术开发, 2023, 50(2): 109-112. (LIU D Y, MA C G, TANG Y, et al. Study on the application technology of ready mixed fluid cement soil in trench backfilling[J]. Building Technology Development, 2023, 50(2): 109-112. (in Chinese)
LIU D Y, MA C G, TANG Y, et al. Study on the application technology of ready mixed fluid cement soil in trench backfilling[J]. Building Technology Development, 2023, 50(2): 109-112. (in Chinese)
|
| [4] |
马 强. 预拌流态固化土基坑肥槽回填技术应用[J]. 建筑技术开发, 2023, 50(1): 155-157. (MA Q. Application of backfilling technology of pre-mixed fluid solidified soil foundation pit fertilizer tank[J]. Building Technology Development, 2023, 50(1): 155-157. (in Chinese)
MA Q. Application of backfilling technology of pre-mixed fluid solidified soil foundation pit fertilizer tank[J]. Building Technology Development, 2023, 50(1): 155-157. (in Chinese)
|
| [5] |
陈 曦, 竺寅威, 沙玉琪, 等. 淤泥质土改良流态固化土强度及流动度试验研究[J]. 低碳世界, 2024, 14(1): 109-111. (CHEN X, ZHU Y W, SHA Y Q, et al. Experimental study on strength and fluidity of improved fluid-solidified soil of silty soil[J]. Low Carbon World, 2024, 14(1): 109-111. (in Chinese)
CHEN X, ZHU Y W, SHA Y Q, et al. Experimental study on strength and fluidity of improved fluid-solidified soil of silty soil[J]. Low Carbon World, 2024, 14(1): 109-111. (in Chinese)
|
| [6] |
王聪聪, 刘茂青, 宋红旗, 等. 赤泥−钢渣粉−水泥固化流态土性能试验研究[J]. 硅酸盐通报, 2023, 42(7): 2488-2496. (WANG C C, LIU M Q, SONG H Q, et al. Experimental study on properties of red mud, steel slag powder and cement solidified fluidized soil[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2488-2496. (in Chinese)
WANG C C, LIU M Q, SONG H Q, et al. Experimental study on properties of red mud, steel slag powder and cement solidified fluidized soil[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2488-2496. (in Chinese)
|
| [7] |
李泽暄. 流态固化土的改良性状及其工程应用[D]. 石家庄: 石家庄铁道大学, 2023. (LI Z X. Improvement properties of fluid solidified soil and its engineering application[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2023. (in Chinese)
LI Z X. Improvement properties of fluid solidified soil and its engineering application[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2023. (in Chinese)
|
| [8] |
苏文轩. 水泥−AASF复合铁尾矿砂流态固化盐渍土试验研究[D]. 沈阳: 沈阳工业大学, 2023. (SU W X. Experimental study on fluid solidified saline soil of cement-AASF composite iron tailings sand[D]. Shenyang: Shenyang University of Technology, 2023. (in Chinese)
SU W X. Experimental study on fluid solidified saline soil of cement-AASF composite iron tailings sand[D]. Shenyang: Shenyang University of Technology, 2023. (in Chinese)
|
| [9] |
苏 悦, 闫 楠, 白晓宇, 等. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212. (SU Y, YAN N, BAI X Y, et al. Research progress and application on engineering characteristics of ready-mixed fluid solidified soil[J]. Materials Reports, 2024, 38(9): 23070212. (in Chinese)
SU Y, YAN N, BAI X Y, et al. Research progress and application on engineering characteristics of ready-mixed fluid solidified soil[J]. Materials Reports, 2024, 38(9): 23070212. (in Chinese)
|
| [10] |
胡海涛, 招 松, 朱泰康, 等. 自密实固化土的无侧限抗压强度试验研究[J]. 江苏建筑, 2023(3): 123-127. (HU H T, ZHAO S, ZHU T K, et al. Experimental study on unconfined compressive strength of self compacting solidified soil[J]. Jiangsu Construction, 2023(3): 123-127. (in Chinese)
HU H T, ZHAO S, ZHU T K, et al. Experimental study on unconfined compressive strength of self compacting solidified soil[J]. Jiangsu Construction, 2023(3): 123-127. (in Chinese)
|
| [11] |
李晓亮, 李 鹏, 吴东阳, 等. 预拌流态固化土填筑施工技术的实践与应用[J]. 四川建筑, 2023, 43(3): 234-236. (LI X L, LI P, WU D Y, et al. Practice and application of filling construction technology of ready-mixed fluidized solidified soil[J]. Sichuan Architecture, 2023, 43(3): 234-236. (in Chinese)
LI X L, LI P, WU D Y, et al. Practice and application of filling construction technology of ready-mixed fluidized solidified soil[J]. Sichuan Architecture, 2023, 43(3): 234-236. (in Chinese)
|
| [12] |
高子琛. 预拌流态固化土的路用性能研究[D]. 西安: 长安大学, 2023. (GAO Z C. Study on road performance of premixed fluid solidified soil[D]. Xi’an: Chang'an University, 2023. (in Chinese)
GAO Z C. Study on road performance of premixed fluid solidified soil[D]. Xi’an: Chang'an University, 2023. (in Chinese)
|
| [13] |
王艺程. 流态固化土在路基工程中的应用研究[D]. 长春: 吉林大学, 2021. (WANG Y C. Research on application of fluid-solidified soil in subgrade engineering[D]. Changchun: Jilin University, 2021. (in Chinese)
WANG Y C. Research on application of fluid-solidified soil in subgrade engineering[D]. Changchun: Jilin University, 2021. (in Chinese)
|
| [14] |
邵应峰, 周云东, 黄安国, 等. 自密实固化土的冻融循环力学特性试验研究[J]. 河南科学, 2022, 40(9): 1398-1403. (SHAO Y F, ZHOU Y D, HUANG A G, et al. Experimental study on mechanical properties of self compacting solidified soil under the function of freeze-thaw cycle[J]. Henan Science, 2022, 40(9): 1398-1403. (in Chinese)
SHAO Y F, ZHOU Y D, HUANG A G, et al. Experimental study on mechanical properties of self compacting solidified soil under the function of freeze-thaw cycle[J]. Henan Science, 2022, 40(9): 1398-1403. (in Chinese)
|
| [15] |
陈四利, 赵百超, 侯 芮. 冻融循环作用下水泥土疲劳特性[J]. 沈阳工业大学学报, 2021, 43(6): 692-697. (CHEN S L, ZHAO B C, HOU R. Fatigue properties of cement soil under action of freeze-thaw cycles[J]. Journal of Shenyang University of Technology, 2021, 43(6): 692-697. (in Chinese)
CHEN S L, ZHAO B C, HOU R. Fatigue properties of cement soil under action of freeze-thaw cycles[J]. Journal of Shenyang University of Technology, 2021, 43(6): 692-697. (in Chinese)
|
| [16] |
陈四利, 史建军, 于 涛, 等. 冻融循环对水泥土力学特性的影响[J]. 应用基础与工程科学学报, 2014, 22(2): 343-349. (CHEN S L, SHI J J, YU T, et al. Effect of freezing-thawing cycle on the mechanical behaviors of cemented soil[J]. Journal of Basic Science and Engineering, 2014, 22(2): 343-349. (in Chinese)
CHEN S L, SHI J J, YU T, et al. Effect of freezing-thawing cycle on the mechanical behaviors of cemented soil[J]. Journal of Basic Science and Engineering, 2014, 22(2): 343-349. (in Chinese)
|
| [17] |
谈云志, 吴 翩, 付 伟, 等. 改良粉土强度的冻融循环效应与微观机制[J]. 岩土力学, 2013, 34(10): 2827-2834. (TAN Y Z, WU P, FU W, et al. Strength and micromechanism of improved silt under freeze-thaw cycle effect[J]. Rock and Soil Mechanics, 2013, 34(10): 2827-2834. (in Chinese)
TAN Y Z, WU P, FU W, et al. Strength and micromechanism of improved silt under freeze-thaw cycle effect[J]. Rock and Soil Mechanics, 2013, 34(10): 2827-2834. (in Chinese)
|
| [18] |
王天亮, 刘建坤, 田亚护. 冻融作用下水泥及石灰改良土静力特性研究[J]. 岩土力学, 2011, 32(1): 193-198. (WANG T L, LIU J K, TIAN Y H. Static properties of cement-and lime-modified soil subjected to freeze-thaw cycles[J]. Rock and Soil Mechanics, 2011, 32(1): 193-198. (in Chinese)
WANG T L, LIU J K, TIAN Y H. Static properties of cement-and lime-modified soil subjected to freeze-thaw cycles[J]. Rock and Soil Mechanics, 2011, 32(1): 193-198. (in Chinese)
|
| [19] |
宁宝宽, 陈四利, 刘 斌. 冻融循环对水泥土力学性质影响的研究[J]. 低温建筑技术, 2004(5): 10-12. (NING B K, CHEN S L, LIU B. Influence of freezing and thawing cycles on mechanical properties of cemented soil[J]. Low Temperature Architecture Technology, 2004(5): 10-12. (in Chinese)
NING B K, CHEN S L, LIU B. Influence of freezing and thawing cycles on mechanical properties of cemented soil[J]. Low Temperature Architecture Technology, 2004(5): 10-12. (in Chinese)
|
| [20] |
申约拿, 王新泉, 王康宇, 等. 流态固化土特性影响因素及应用进展[J]. 重庆建筑, 2024, 23(12): 89-93. (SHEN Y N, WANG X Q, WANG K Y, et al. Factors influencing the characteristics of flowable stabilized soil and advances in its applications[J]. Chongqing Architecture, 2024, 23(12): 89-93. (in Chinese)
SHEN Y N, WANG X Q, WANG K Y, et al. Factors influencing the characteristics of flowable stabilized soil and advances in its applications[J]. Chongqing Architecture, 2024, 23(12): 89-93. (in Chinese)
|
| [21] |
郅 彬, 王尚杰. 干湿−冻融循环下黄土力学特性及损伤机制研究[J]. 岩土力学, 2024, 45(4): 1092-1102. (ZHI B, WANG S J. Mechanical properties and damage mechanism of loess under dry-wet freeze-thaw cycle[J]. Rock and Soil Mechanics, 2024, 45(4): 1092-1102, (in Chinese) doi: 10.16285/j.rsm.2023.0627
ZHI B, WANG S J. Mechanical properties and damage mechanism of loess under dry-wet freeze-thaw cycle[J]. Rock and Soil Mechanics, 2024, 45(4): 1092-1102, doi: 10.16285/j.rsm.2023.0627
|
| [22] |
卢 鑫, 杨更社, 叶万军, 等. 冻融循环作用下不同粒径砂岩强度劣化规律与机制研究[J]. 工程地质学报, 2024, 32(6): 2198-2209. (LU X, YANG G S, YE W J, et al. Study on the strength deterioration law and mechanism of sandstone with different grain sizes under freeze-thaw cycles[J]. Journal of Engineering Geology, 2024, 32(6): 2198-2209, (in Chinese) doi: 10.13544/j.cnki.jeg.2023-0380
LU X, YANG G S, YE W J, et al. Study on the strength deterioration law and mechanism of sandstone with different grain sizes under freeze-thaw cycles[J]. Journal of Engineering Geology, 2024, 32(6): 2198-2209, doi: 10.13544/j.cnki.jeg.2023-0380
|
| [23] |
叶万军, 强艳红, 景宏君, 等. 基于核磁共振的不同含水率黄土古土壤冻融循环试验研究[J]. 工程地质学报, 2022, 30(1): 144-153. (YE W J, QIANG Y H, JING H J, et al. Freeze-thaw cycle experiment of loess paleosol with different water content based on nuclear magnetic resonance[J]. Journal of Engineering Geology, 2022, 30(1): 144-153. (in Chinese)
YE W J, QIANG Y H, JING H J, et al. Freeze-thaw cycle experiment of loess paleosol with different water content based on nuclear magnetic resonance[J]. Journal of Engineering Geology, 2022, 30(1): 144-153. (in Chinese)
|
| [24] |
范荣全, 李敬雄, 冯 川, 等. 冻融循环作用下泥炭土强度劣化研究[J]. 工业建筑, 2024, 54(10): 168-174. (FAN R Q, LI J X, FENG C, et al. Study on strength deterioration of peat soil in freeze-thaw cycles[J]. Industrial Construction, 2024, 54(10): 168-174. (in Chinese) doi: 10.3724/j.gyjzG22101822
FAN R Q, LI J X, FENG C, et al. Study on strength deterioration of peat soil in freeze-thaw cycles[J]. Industrial Construction, 2024, 54(10): 168-174. (in Chinese) doi: 10.3724/j.gyjzG22101822
|