Volume 39 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
Zhang Yi, Xiao Chengjing. Research progress on the application of anti-slide pile structure damage and reinforcement technology[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(6): 801-807. doi: 10.20265/j.cnki.issn.1007-2993.2024-0449
Citation: Zhang Yi, Xiao Chengjing. Research progress on the application of anti-slide pile structure damage and reinforcement technology[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(6): 801-807. doi: 10.20265/j.cnki.issn.1007-2993.2024-0449

Research progress on the application of anti-slide pile structure damage and reinforcement technology

doi: 10.20265/j.cnki.issn.1007-2993.2024-0449
  • Received Date: 2024-09-29
  • Accepted Date: 2025-03-06
  • Rev Recd Date: 2024-12-23
  • Available Online: 2025-12-08
  • Publish Date: 2025-12-08
  • Due to overloaded service, material aging, environmental erosion, and other reasons, anti-slide pile structures may experience failure. Currently, there is limited research and application of in-situ reinforcement techniques for damaged anti-slide piles, and the development of new reinforcement technologies is urgently needed. This paper analyzes the stress and damage characteristics of anti-slide pile structures by summarizing existing research and application cases, and generalizes the load-bearing characteristics and damage modes of anti-slide piles. A systematic summary of the reinforcement methods for anti-slide piles was conducted in light of actual engineering conditions. The application of numerical simulation methods in the field of anti-slide pile research was summarized, and the feasibility of using numerical simulation methods for in-situ reinforcement and stabilization of anti-slide piles was analyzed. The research findings indicate that grouting within the pile body combined with rebar planting and increasing the pile diameter, are reliable in-situ reinforcement techniques. Numerical analysis methods can effectively simulate the in-situ reinforcement process of damaged anti-slide piles. These conclusions offer guidance for the numerical simulation research of in-situ reinforcement for damaged anti-slide piles and provide a reference for the development of in-situ reinforcement technologies.

     

  • loading
  • [1]
    KIM J K, LU S, MAI Y K. Interfacial debonding and fibre pull-out stresses: part IV influence of interface layer on the stress transfer[J]. Journal of Materials Science, 1994, 29(2): 554-561. doi: 10.1007/BF01162521
    [2]
    赵 军, 刘静德, 梁志荣. 多排抗滑桩在大型滑坡治理中的工程应用研究[J]. 建筑科学, 2020, 36(S1): 156-161. (ZHAO J, LIU J D, LIANG Z R. Application of multi-row anti-sliding piles for a large landslide treatment[J]. Building Science, 2020, 36(S1): 156-161. (in Chinese)

    ZHAO J, LIU J D, LIANG Z R. Application of multi-row anti-sliding piles for a large landslide treatment[J]. Building Science, 2020, 36(S1): 156-161. (in Chinese)
    [3]
    HU X L, ZHOU C, XU C, et al. Model tests of the response of landslide-stabilizing piles to piles with different stiffness[J]. Landslides, 2019, 16(11): 2187-2200. doi: 10.1007/s10346-019-01233-4
    [4]
    渠孟飞, 王 珏, 朱 磊, 等. 基于多源数据分析的三峡库区抗滑工程优化与比选[J]. 科学技术与工程, 2022, 22(29): 12754-12763. (QU M F, WANG J, ZHU L, et al. Optimization and comparison of anti-sliding projects in the three gorges reservoir area based on multi-source data analysis[J]. Science Technology and Engineering, 2022, 22(29): 12754-12763. (in Chinese) doi: 10.3969/j.issn.1671-1815.2022.29.007

    QU M F, WANG J, ZHU L, et al. Optimization and comparison of anti-sliding projects in the three gorges reservoir area based on multi-source data analysis[J]. Science Technology and Engineering, 2022, 22(29): 12754-12763. (in Chinese) doi: 10.3969/j.issn.1671-1815.2022.29.007
    [5]
    邓明园, 杨 泉, 肖世国, 等. 高路堤承台式抗滑桩力学行为的模型试验[J]. 应用力学学报, 2025, 42(1): 182-193. (DENG M Y, YANG Q, XIAO S G, et al. Laboratory model test on mechanical behaviors of stabilizing pile with rigid platform used to retain high embankments[J]. Chinese Journal of Applied Mechanics, 2025, 42(1): 182-193. (in Chinese) doi: 10.11776/j.issn.1000-4939.2025.01.020

    DENG M Y, YANG Q, XIAO S G, et al. Laboratory model test on mechanical behaviors of stabilizing pile with rigid platform used to retain high embankments[J]. Chinese Journal of Applied Mechanics, 2025, 42(1): 182-193. (in Chinese) doi: 10.11776/j.issn.1000-4939.2025.01.020
    [6]
    祝廷尉, 胡新丽, 徐 聪, 等. 嵌岩桩抗滑特性的物理模型试验研究[J]. 岩土力学, 2014, 35(S1): 165-172. (ZHU T W, HU X L, XU C, et al. Physical model test research on anti-sliding characteristics of rock-socketed pile[J]. Rock and Soil Mechanics, 2014, 35(S1): 165-172. (in Chinese)

    ZHU T W, HU X L, XU C, et al. Physical model test research on anti-sliding characteristics of rock-socketed pile[J]. Rock and Soil Mechanics, 2014, 35(S1): 165-172. (in Chinese)
    [7]
    匡 义. 抗滑桩设计参数对边坡加固效应的影响[J]. 科技传播, 2012, 4(13): 124, 73. (KUANG Y. The impact of anti-slide pile design parameters on slope reinforcement effects[J]. Science and Technology Communication, 2012, 4(13): 124, 73. (in Chinese)

    KUANG Y. The impact of anti-slide pile design parameters on slope reinforcement effects[J]. Science and Technology Communication, 2012, 4(13): 124, 73. (in Chinese)
    [8]
    YANG S K, REN X H, ZHANG J X. Study on embedded length of piles for slope reinforced with one row of piles[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2011, 3(2): 167-178. doi: 10.3724/SP.J.1235.2011.00167
    [9]
    任青阳, 赵梦园, 谢忠伟, 等. 抗滑桩应变特征与内力非线性研究[J]. 水文地质工程地质, 2021, 48(2): 114-124. (REN Q Y, ZHAO M Y, XIE Z W, et al. A study of the strain characteristics and internal force nonlinearity of anti-slide pile[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 114-124. (in Chinese)

    REN Q Y, ZHAO M Y, XIE Z W, et al. A study of the strain characteristics and internal force nonlinearity of anti-slide pile[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 114-124. (in Chinese)
    [10]
    侯小强, 王新飞, 贾洪璐, 等. 渐进式滑坡锚索抗滑桩预应力张拉值计算[J]. 工程科学与技术, 2024, 56(1): 138-147. (HOU X Q, WANG X F, JIA H L, et al. Calculation of the prestressed tension value of the progressive landslide anchor cable[J]. Advanced Engineering Sciences, 2024, 56(1): 138-147. (in Chinese)

    HOU X Q, WANG X F, JIA H L, et al. Calculation of the prestressed tension value of the progressive landslide anchor cable[J]. Advanced Engineering Sciences, 2024, 56(1): 138-147. (in Chinese)
    [11]
    王贵华. 软硬相间地层条件下锚索抗滑桩与滑坡相互作用机理及优化研究[D]. 武汉: 中国地质大学, 2022. (WANG G H. Interaction mechanism and optimization design for anchored slide-resistant piles reinforced landslides with weak-hard interbedded bedrock[D]. Wuhan: China University of Geosciences, 2022. (in Chinese)

    WANG G H. Interaction mechanism and optimization design for anchored slide-resistant piles reinforced landslides with weak-hard interbedded bedrock[D]. Wuhan: China University of Geosciences, 2022. (in Chinese)
    [12]
    肖 燃. 抗滑桩震损破坏特征分析及修复加固方法研究[D]. 成都: 成都理工大学, 2015. (XIAO R. Analysis of characteristics of earthquake damage of anti-slide pile damage and repair reinforcement method[D]. Chengdu: Chengdu University of Technology, 2015. (in Chinese)

    XIAO R. Analysis of characteristics of earthquake damage of anti-slide pile damage and repair reinforcement method[D]. Chengdu: Chengdu University of Technology, 2015. (in Chinese)
    [13]
    汪 源, 谢 强, 张建华. 双排抗滑桩布设方式对推力分配的影响[J]. 重庆大学学报, 2023, 46(8): 78-87. (WANG Y, XIE Q, ZHANG J H. Effect of double-row anti-slide piles on thrust distribution[J]. Journal of Chongqing University, 2023, 46(8): 78-87. (in Chinese) doi: 10.11835/j.issn.1000-582X.2023.08.008

    WANG Y, XIE Q, ZHANG J H. Effect of double-row anti-slide piles on thrust distribution[J]. Journal of Chongqing University, 2023, 46(8): 78-87. (in Chinese) doi: 10.11835/j.issn.1000-582X.2023.08.008
    [14]
    刘东子. 水库滑坡–抗滑桩体系失稳机理物理模型试验研究[D]. 武汉: 中国地质大学, 2023. (LIU D Z. Physical model test study of failure mechanisms in a reservoir landslide-pile system[D]. Wuhan: China University of Geosciences, 2023. (in Chinese)

    LIU D Z. Physical model test study of failure mechanisms in a reservoir landslide-pile system[D]. Wuhan: China University of Geosciences, 2023. (in Chinese)
    [15]
    刘耿仁, 田建雄. 某顺层边坡锚索抗滑桩失效变形分析[J]. 公路, 2021, 66(5): 93-100. (LIU G R, TIAN J X. Analysis of the failure deformation of anchor cables in a bedding slope with anti-slide piles[J]. Highway, 2021, 66(5): 93-100. (in Chinese)

    LIU G R, TIAN J X. Analysis of the failure deformation of anchor cables in a bedding slope with anti-slide piles[J]. Highway, 2021, 66(5): 93-100. (in Chinese)
    [16]
    郑章清, 林 星. 抗滑桩失效原因分析[J]. 铁道标准设计, 2001, 21(7): 41-42. (ZHENG Z Q, LIN X. Analysis of the failure causes of anti-slide piles[J]. Railway Standard Design, 2001, 21(7): 41-42. (in Chinese)

    ZHENG Z Q, LIN X. Analysis of the failure causes of anti-slide piles[J]. Railway Standard Design, 2001, 21(7): 41-42. (in Chinese)
    [17]
    熊维林. 抗滑桩桩–土作用机制及失效模式研究[D]. 成都: 西南交通大学, 2022. (XIONG W L. Research on pile-soil interaction mechanism and failure mode of anti-slide piles[D]. Chengdu: Southwest Jiaotong University, 2022. (in Chinese)

    XIONG W L. Research on pile-soil interaction mechanism and failure mode of anti-slide piles[D]. Chengdu: Southwest Jiaotong University, 2022. (in Chinese)
    [18]
    石胜伟, 蔡 强, 程英建, 等. 滑坡在役防治工程缺陷分类和健康评价方法[J]. 工程地质学报, 2024, 32(2): 522-528. (SHI S W, CAI Q, CHENG Y J, et al. Defect classification and health assessment method of landslide control engineering in service[J]. Journal of Engineering Geology, 2024, 32(2): 522-528. (in Chinese)

    SHI S W, CAI Q, CHENG Y J, et al. Defect classification and health assessment method of landslide control engineering in service[J]. Journal of Engineering Geology, 2024, 32(2): 522-528. (in Chinese)
    [19]
    刘 卓. 极端降雨下抗滑桩局部失效成因研究——以吉林抚生村滑坡为例[J]. 甘肃水利水电技术, 2024, 60(1): 58-64. (LIU Z. Study on the causes of local failure of anti-slide piles under extreme rainfall — a case study of Fusheng village landslide in Jilin[J]. Gansu Water Resources and Hydropower Technology, 2024, 60(1): 58-64. (in Chinese)

    LIU Z. Study on the causes of local failure of anti-slide piles under extreme rainfall — a case study of Fusheng village landslide in Jilin[J]. Gansu Water Resources and Hydropower Technology, 2024, 60(1): 58-64. (in Chinese)
    [20]
    吴 永, 何思明, 李新坡. 地震波作用下抗滑桩的失效机理[J]. 四川大学学报(工程科学版), 2009, 41(3): 284-288. (WU Y, HE S M, LI X P. Failure mechanism of anti-slide pile under seismic wave[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(3): 284-288. (in Chinese)

    WU Y, HE S M, LI X P. Failure mechanism of anti-slide pile under seismic wave[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(3): 284-288. (in Chinese)
    [21]
    谢文豪. 基于内聚力模型的悬臂式抗滑桩承载性能研究[D]. 重庆: 重庆交通大学, 2023. (XIE W H. Research on the bearing performance of cantilever anti slip pile based on cohesion model[D]. Chongqing: Chongqing Jiaotong University, 2023. (in Chinese)

    XIE W H. Research on the bearing performance of cantilever anti slip pile based on cohesion model[D]. Chongqing: Chongqing Jiaotong University, 2023. (in Chinese)
    [22]
    周云涛, 石胜伟, 蔡 强, 等. 基于能量损失的抗滑桩损伤模型及其应用[J]. 地质力学学报, 2019, 25(6): 1107-1115. (ZHOU Y T, SHI S W, CAI Q, et al. Damage model of anti-slide pile based on energy loss and its application[J]. Journal of Geomechanics, 2019, 25(6): 1107-1115. (in Chinese) doi: 10.12090/j.issn.1006-6616.2019.25.06.094

    ZHOU Y T, SHI S W, CAI Q, et al. Damage model of anti-slide pile based on energy loss and its application[J]. Journal of Geomechanics, 2019, 25(6): 1107-1115. (in Chinese) doi: 10.12090/j.issn.1006-6616.2019.25.06.094
    [23]
    中华人民共和国住房和城乡建设部. 建筑桩基技术规范: JGJ 94—2008[S]. 北京: 中国建筑工业出版社, 2008. (Technical code for building pile foundations: JGJ94—2008[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese)

    Technical code for building pile foundations: JGJ94—2008[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese)
    [24]
    李铁洪, 刘永才. 抗滑桩的破坏形态与有限元设计方法[J]. 中外公路, 2009, 29(2): 36-40. (LI T H, LIU Y C. Failure modes of anti-slide piles and finite element design method[J]. Journal of China & Foreign Highway, 2009, 29(2): 36-40. (in Chinese)

    LI T H, LIU Y C. Failure modes of anti-slide piles and finite element design method[J]. Journal of China & Foreign Highway, 2009, 29(2): 36-40. (in Chinese)
    [25]
    孙岩平. 抗滑桩失效判断与滑坡稳定性分析[D]. 西安: 长安大学, 2013. (SUN Y P. Anti-slide pile failure judgment and stability analysis of sliding[D]. Xi’an: Chang’an University, 2013. (in Chinese)

    SUN Y P. Anti-slide pile failure judgment and stability analysis of sliding[D]. Xi’an: Chang’an University, 2013. (in Chinese)
    [26]
    杨金栋. 既有抗滑桩的损伤检测与补强加固技术[J]. 铁道建筑, 2012(5): 107-109. (YANG J D. Damage detection and reinforcement technology for existing anti-slide piles[J]. Railway Engineering, 2012(5): 107-109. (in Chinese)

    YANG J D. Damage detection and reinforcement technology for existing anti-slide piles[J]. Railway Engineering, 2012(5): 107-109. (in Chinese)
    [27]
    李寻昌. 滑坡与锚杆抗滑桩相互作用的大型物理模型试验研究[D]. 西安: 长安大学, 2011. (LI X C. Large physical model test on the interaction between the landslide and anchor anti-slide pile[D]. Xi’an: Chang’an University, 2011. (in Chinese)

    LI X C. Large physical model test on the interaction between the landslide and anchor anti-slide pile[D]. Xi’an: Chang’an University, 2011. (in Chinese)
    [28]
    胡永久. 隧道进口端边坡抗滑桩失效成因及加固分析[J]. 交通科技与管理, 2023, 4(2): 140-142. (HU Y J. Analysis of the Causes of failure and reinforcement of anti-slide piles at the tunnel entrance slope[J]. Journal of Transportation Science and Management, 2023, 4(2): 140-142. (in Chinese)

    HU Y J. Analysis of the Causes of failure and reinforcement of anti-slide piles at the tunnel entrance slope[J]. Journal of Transportation Science and Management, 2023, 4(2): 140-142. (in Chinese)
    [29]
    苟德明, 邓少军. 偏压隧道抗滑桩回填反压失效原因分析及处治措施[J]. 中国科技信息, 2010(6): 55-58. (GOU D M, DENG S J. Failure reason analysis and treatment measures of counter-pressure filling with anti-slide piles in unsymmetrical pressure tunnel[J]. China Science and Technology Information, 2010(6): 55-58. (in Chinese) doi: 10.3969/j.issn.1001-8972.2010.06.015

    GOU D M, DENG S J. Failure reason analysis and treatment measures of counter-pressure filling with anti-slide piles in unsymmetrical pressure tunnel[J]. China Science and Technology Information, 2010(6): 55-58. (in Chinese) doi: 10.3969/j.issn.1001-8972.2010.06.015
    [30]
    王 勇, 杨全忠, 张元元, 等. 某悬臂式抗滑桩倾斜原因分析及处置[J]. 四川地质学报, 2022, 42(4): 611-614. (WANG Y, YANG Q Z, ZHANG Y Y, et al. Tilting cause analysis and disposal of a cantilever anti-slide pile[J]. Acta Geologica Sichuan, 2022, 42(4): 611-614. (in Chinese) doi: 10.3969/j.issn.1006-0995.2022.04.013

    WANG Y, YANG Q Z, ZHANG Y Y, et al. Tilting cause analysis and disposal of a cantilever anti-slide pile[J]. Acta Geologica Sichuan, 2022, 42(4): 611-614. (in Chinese) doi: 10.3969/j.issn.1006-0995.2022.04.013
    [31]
    林剑铭, 廖小平, 魏土荣, 等. 受损既有抗滑桩补强加固设计研究[J]. 土工基础, 2015, 29(1): 22-25. (LIN J M, LIAO X P, WEI T R, et al. Strengthening design of a defected slide-resistant cast-in-place concrete pile[J]. Soil Engineering and Foundation, 2015, 29(1): 22-25. (in Chinese)

    LIN J M, LIAO X P, WEI T R, et al. Strengthening design of a defected slide-resistant cast-in-place concrete pile[J]. Soil Engineering and Foundation, 2015, 29(1): 22-25. (in Chinese)
    [32]
    郭志权. 钻孔压灌超流态混凝土桩常见事故及处理方法[J]. 煤炭工程, 2003(12): 23-26. (GUO Z Q. Common failures and treatment measures of the bored pile made by pressure and superfluidity method[J]. Coal Engineering, 2003(12): 23-26. (in Chinese) doi: 10.3969/j.issn.1671-0959.2003.12.008

    GUO Z Q. Common failures and treatment measures of the bored pile made by pressure and superfluidity method[J]. Coal Engineering, 2003(12): 23-26. (in Chinese) doi: 10.3969/j.issn.1671-0959.2003.12.008
    [33]
    CHOW Y K. Analysis of piles used for slope stabilization[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20(9): 635-646. doi: 10.1002/(SICI)1096-9853(199609)20:9<635::AID-NAG839>3.0.CO;2-X
    [34]
    周喜武, 朱俊高, 包腾飞, 等. 抗滑桩极限位移及桩侧阻力分布型式研究[J]. 三峡大学学报(自然科学版), 2024, 46(1): 71-75. (ZHOU X W, ZHU J G, BAO T F, et al. Study on ultimate displacement and lateral resistance distribution pattern of anti-slide pile[J]. Journal of China Three Gorges University (Natural Sciences), 2024, 46(1): 71-75. (in Chinese)

    ZHOU X W, ZHU J G, BAO T F, et al. Study on ultimate displacement and lateral resistance distribution pattern of anti-slide pile[J]. Journal of China Three Gorges University (Natural Sciences), 2024, 46(1): 71-75. (in Chinese)
    [35]
    LIU D Z, HU X L, ZHOU C, et al. Deformation mechanisms and evolution of a pile-reinforced landslide under long-term reservoir operation[J]. Engineering Geology, 2020, 275: 105747. doi: 10.1016/j.enggeo.2020.105747
    [36]
    吕韶全, 孙狂飙, 王少锋, 等. 考虑土体自重应力影响的抗滑桩三维土拱效应[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(4): 510-517. (LÜ S Q, SUN K B, WANG S F, et al. Three-dimensional soil arching effect considering the influence of soil gravity stress on anti-slide pile[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2021, 53(4): 510-517. (in Chinese)

    LÜ S Q, SUN K B, WANG S F, et al. Three-dimensional soil arching effect considering the influence of soil gravity stress on anti-slide pile[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2021, 53(4): 510-517. (in Chinese)
    [37]
    李 浩, 殷德胜, 吴海林. 桩–土作用下桩间距及桩位对抗滑桩及土体力学特性的影响[J]. 科学技术与工程, 2021, 21(4): 1529-1535. (LI H, YIN D S, WU H L. Influence of pile spacing and position on sliding pile and soil mechanical properties under pile-soil interaction[J]. Science Technology and Engineering, 2021, 21(4): 1529-1535. (in Chinese) doi: 10.3969/j.issn.1671-1815.2021.04.040

    LI H, YIN D S, WU H L. Influence of pile spacing and position on sliding pile and soil mechanical properties under pile-soil interaction[J]. Science Technology and Engineering, 2021, 21(4): 1529-1535. (in Chinese) doi: 10.3969/j.issn.1671-1815.2021.04.040
    [38]
    王 壮, 苏 雷, 时 伟, 等. 地震作用下不同支护结构对滑坡加固效果研究[J]. 工程地质学报, 2023, 31(1): 176-187. (WANG Z, SU L, SHI W, et al. Reinforcement effect of different support structures against landslide under earthquake[J]. Journal of Engineering Geology, 2023, 31(1): 176-187. (in Chinese)

    WANG Z, SU L, SHI W, et al. Reinforcement effect of different support structures against landslide under earthquake[J]. Journal of Engineering Geology, 2023, 31(1): 176-187. (in Chinese)
    [39]
    CHEN G P, YANG C W, TONG X H, et al. Shaking table test on dynamic response of a deposit slope with a weak interlayer reinforced by the pile-anchor structure[J]. Soil Dynamics and Earthquake Engineering, 2023, 170: 107912. doi: 10.1016/j.soildyn.2023.107912
    [40]
    周 勇, 王仲凯, 杨校辉. 舟曲江顶崖滑坡抗滑桩桩身响应监测分析[J]. 工程地质学报, 2022, 30(1): 197-204. (ZHOU Y, WANG Z K, YANG X H. Monitoring analysis of anti-slide piles for Jiangdingya landslide in Zhouqu[J]. Journal of Engineering Geology, 2022, 30(1): 197-204. (in Chinese)

    ZHOU Y, WANG Z K, YANG X H. Monitoring analysis of anti-slide piles for Jiangdingya landslide in Zhouqu[J]. Journal of Engineering Geology, 2022, 30(1): 197-204. (in Chinese)
    [41]
    王雪松, 程 桦, 姚直书, 等. 富水砂层宾汉浆液柱形渗透扩散模型及其试验研究[J]. 煤田地质与勘探, 2024, 52(8): 124-133. (WANG X S, CHENG H, YAO Z S, et al. A cylindrical permeation and diffusion model for Bingham grout in water-rich sand layers and its experimental research[J]. Coal Geology & Exploration, 2024, 52(8): 124-133. (in Chinese) doi: 10.12363/issn.1001-1986.24.03.0144

    WANG X S, CHENG H, YAO Z S, et al. A cylindrical permeation and diffusion model for Bingham grout in water-rich sand layers and its experimental research[J]. Coal Geology & Exploration, 2024, 52(8): 124-133. (in Chinese) doi: 10.12363/issn.1001-1986.24.03.0144
    [42]
    韩 鑫, 叶 飞, 应凯臣, 等. 考虑自重的盾构壁后注浆浆液驱替渗透扩散[J]. 华中科技大学学报(自然科学版), 2020, 48(4): 37-42. (HAN X, YE F, YING K C, et al. Displacement effect on penetration diffusion of backfill grouting of shield tunnel considering self-weight[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(4): 37-42. (in Chinese)

    HAN X, YE F, YING K C, et al. Displacement effect on penetration diffusion of backfill grouting of shield tunnel considering self-weight[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(4): 37-42. (in Chinese)
    [43]
    钟 杰, 李 博, 宋振宇, 等. 基于离散裂隙网络的围岩注浆加固规律研究[J]. 地下空间与工程学报, 2024, 20(4): 1286-1297. (ZHONG J, LI B, SONG Z Y, et al. Numerical study on grouting reinforcement effect on fractured rock masses of tunnels based on discrete fracture networks[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(4): 1286-1297. (in Chinese)

    ZHONG J, LI B, SONG Z Y, et al. Numerical study on grouting reinforcement effect on fractured rock masses of tunnels based on discrete fracture networks[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(4): 1286-1297. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article views (16) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return