Volume 40 Issue 1
Feb.  2026
Turn off MathJax
Article Contents
LI Jian, ZHANG Mingjing, LIU Xiaowei, ZHUANG Peizhi, ZHU Qiyin, CUI Xueshi, LI Gang. Optimization of anti-liquefaction measures for rigid pile composite foundations of cooling towers in the flooded area of Yellow River[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2026, 40(1): 75-83. doi: 10.20265/j.cnki.issn.1007-2993.2024-0503
Citation: LI Jian, ZHANG Mingjing, LIU Xiaowei, ZHUANG Peizhi, ZHU Qiyin, CUI Xueshi, LI Gang. Optimization of anti-liquefaction measures for rigid pile composite foundations of cooling towers in the flooded area of Yellow River[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2026, 40(1): 75-83. doi: 10.20265/j.cnki.issn.1007-2993.2024-0503

Optimization of anti-liquefaction measures for rigid pile composite foundations of cooling towers in the flooded area of Yellow River

doi: 10.20265/j.cnki.issn.1007-2993.2024-0503
  • Received Date: 2024-11-01
  • Publish Date: 2026-02-06
  • To investigate the mechanical characteristics and response mechanism of a rigid pile composite foundation with pile reinforcement for cooling towers in liquefiable soil in the flooded area of Yellow River, a numerical analysis was conducted. This study analyzed the dynamic interaction between the site soil and the rigid pile structure under seismic loading, comparing the effects of different pile reinforcement configurations on foundation seismic resistance and deformation characteristics. Results show that peak bending moments occur in the outermost piles, located at the boundary between the liquefiable soil layer and the underlying non-liquefiable soil. For single-row, triple-row, and varying-length pile configurations, the peak bending moments decreased by 16.7%, 31.9%, and 29.9%, respectively. Defining the reinforcement efficiency coefficient as the ratio of peak bending moment reduction to reinforcement pile length, analysis revealed that the varying-length pile configuration has the highest efficiency, while the triple-row pile configuration is the least efficient. Pile reinforcement also reduces overall acceleration around the pile and improves settlement deformation of the pile cap. For single-row, triple-row, and varying-length pile configurations, settlement was reduced by 7.75%, 24.03%, and 15.5%, respectively.

     

  • loading
  • [1]
    何长明, 彭功勋. 深厚软土区路桥过渡段差异沉降控制[J]. 岩土工程技术, 2021, 35(5): 294-298. (HE C M, PENG G X. Differential settlement control of road bridge transition section in deep soft soil area[J]. Geotechnical Engineering Technique, 2021, 35(5): 294-298. (in Chinese) doi: 10.3969/j.issn.1007-2993.2021.05.003

    HE C M, PENG G X. Differential settlement control of road bridge transition section in deep soft soil area[J]. Geotechnical Engineering Technique, 2021, 35(5): 294-298. (in Chinese) doi: 10.3969/j.issn.1007-2993.2021.05.003
    [2]
    MAHESHWARI B K, FIROJ M. Seismic response of combined piled raft foundation using advanced liquefaction model[J]. Soil Dynamics and Earthquake Engineering, 2024, 181: 108694 doi: 10.1016/j.soildyn.2024.108694
    [3]
    周 航, 亓戈平, 陈荣淋. 软土中XCC刚性桩复合地基承载特性时效性研究[J]. 中国公路学报, 2024, 37(6): 132-143. (ZHOU H, QI G P, CHEN R L. Study on time effect of bearing characteristics of XCC rigid pile composite foundation in soft soil[J]. China Journal of Highway and Transport, 2024, 37(6): 132-143. (in Chinese)

    ZHOU H, QI G P, CHEN R L. Study on time effect of bearing characteristics of XCC rigid pile composite foundation in soft soil[J]. China Journal of Highway and Transport, 2024, 37(6): 132-143. (in Chinese)
    [4]
    陈育民, 刘汉龙, 赵 楠. 抗液化刚性排水桩振动台试验的数值模拟研究[J]. 土木工程学报, 2010, 43(12): 114-119. (CHEN Y M, LIU H L, ZHAO N. Laboratory test on anti-liquefaction characteristics of rigidity-drain pile[J]. China Civil Engineering Journal, 2010, 43(12): 114-119. (in Chinese)

    CHEN Y M, LIU H L, ZHAO N. Laboratory test on anti-liquefaction characteristics of rigidity-drain pile[J]. China Civil Engineering Journal, 2010, 43(12): 114-119. (in Chinese)
    [5]
    李 丰, 宋二祥. 刚性桩复合地基抗震计算的一种简化方法[J]. 西北地震学报, 2011, 33(S1): 123-127. (LI F, SONG E X. A simplified calculation method for seismic response of rigid pile composite foundation[J]. Northwestern Seismological Journal, 2011, 33(S1): 123-127. (in Chinese)

    LI F, SONG E X. A simplified calculation method for seismic response of rigid pile composite foundation[J]. Northwestern Seismological Journal, 2011, 33(S1): 123-127. (in Chinese)
    [6]
    鲍 鹏, 苏彩丽, 张利伟. 基于时程分析法的刚性桩复合地基地震响应分析[J]. 岩土工程学报, 2011, 33(S2): 485-489. (BAO P, SU C L, ZHANG L W. Seismic response of rigid pile composite foundation based on time history analysis method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 485-489. (in Chinese)

    BAO P, SU C L, ZHANG L W. Seismic response of rigid pile composite foundation based on time history analysis method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 485-489. (in Chinese)
    [7]
    郜文龙. 刚性桩复合地基—基础—上部结构整体抗震性能的简化算法研究[D]. 郑州: 郑州大学, 2017. (GAO W L. Research on simplified algorithm for overall seismic performance analysis of rigid pile composite foundation- foundation- upper structure[D]. Zhengzhou: Zhengzhou University, 2017. (in Chinese)

    GAO W L. Research on simplified algorithm for overall seismic performance analysis of rigid pile composite foundation- foundation- upper structure[D]. Zhengzhou: Zhengzhou University, 2017. (in Chinese)
    [8]
    朱 叶. 变刚度刚性桩复合地基抗震性能研究[D]. 开封: 河南大学, 2012. (ZHU Y. Numerical analysis of aseismatic capability of rigid pile composite foundation with variable rigidity[D]. Kaifeng: Henan University, 2012. (in Chinese)

    ZHU Y. Numerical analysis of aseismatic capability of rigid pile composite foundation with variable rigidity[D]. Kaifeng: Henan University, 2012. (in Chinese)
    [9]
    英峻豪. 刚性桩复合地基—筏板基础—上部结构整体抗震性能研究[D]. 广州: 华南理工大学, 2012. (YING J H. Overall seismic performance analysis of rigid pile composite foundation-raft foundation-upper structure[D]. Guangzhou: South China University of Technology, 2012. (in Chinese)

    YING J H. Overall seismic performance analysis of rigid pile composite foundation-raft foundation-upper structure[D]. Guangzhou: South China University of Technology, 2012. (in Chinese)
    [10]
    王振峰. 变刚度刚性桩复合地基在地震作用下的性状分析[D]. 太原: 太原理工大学, 2015. (WANG Z F. Character analysis of varying rigidity of rigid pile composite foundation under seismic load[D]. Taiyuan: Taiyuan University of Technology, 2015. (in Chinese)

    WANG Z F. Character analysis of varying rigidity of rigid pile composite foundation under seismic load[D]. Taiyuan: Taiyuan University of Technology, 2015. (in Chinese)
    [11]
    张 凯, 宋克英, 冯科明, 等. 大功率振冲碎石桩处理液化地基应用研究[J]. 岩土工程技术, 2023, 37(1): 100-104. (ZHANG K, SONG K Y, FENG K M, et al. Application of high power vibroflotation gravel pile in the treatment of liquefied foundation[J]. Geotechnical Engineering Technique, 2023, 37(1): 100-104. (in Chinese)

    ZHANG K, SONG K Y, FENG K M, et al. Application of high power vibroflotation gravel pile in the treatment of liquefied foundation[J]. Geotechnical Engineering Technique, 2023, 37(1): 100-104. (in Chinese)
    [12]
    WOBBES E, BEUTH L, VUIK C, et al. Modeling of liquefaction using two-phase FEM with UBC3D-PLM model[J]. Procedia Engineering, 2017, 175: 349-356. doi: 10.1016/j.proeng.2017.01.043
    [13]
    白建方, 董士欣. 常用岩土本构模型的选择及对场地动力反应分析结果的影响[J]. 震灾防御技术, 2017, 12(3): 635-645. (BAI J F, DONG S X. Influence of selection of constitutive models of soil on the site dynamic analysis[J]. Technology for Earthquake Disaster Prevention, 2017, 12(3): 635-645. (in Chinese) doi: 10.11899/zzfy20170319

    BAI J F, DONG S X. Influence of selection of constitutive models of soil on the site dynamic analysis[J]. Technology for Earthquake Disaster Prevention, 2017, 12(3): 635-645. (in Chinese) doi: 10.11899/zzfy20170319
    [14]
    PUEBLA H, BYRNE P M, PHILLIPS R. Analysis of CANLEX liquefaction embankments: prototype and centrifuge models[J]. Canadian Geotechnical Journal, 1997, 34(5): 641-657. doi: 10.1139/t97-034
    [15]
    李煜东, 李 平, 孙强强, 等. 基于ABAQUS的土层地震反应分析[J]. 防灾科技学院学报, 2016, 18(2): 64-71. (LI Y D, LI P, SUN Q Q, et al. Seismic response analysis of soil layer based on ABAQUS[J]. Journal of Institute of Disaster Prevention, 2016, 18(2): 64-71. (in Chinese)

    LI Y D, LI P, SUN Q Q, et al. Seismic response analysis of soil layer based on ABAQUS[J]. Journal of Institute of Disaster Prevention, 2016, 18(2): 64-71. (in Chinese)
    [16]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 先张法预应力混凝土管桩: GB/T 13476—2009[S]. 北京: 中国标准出版社, 2010. (General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. Pretensioned spun concrete piles: GB/T 13476—2009[S]. Beijing: China Standards Press, 2010. (in Chinese)

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. Pretensioned spun concrete piles: GB/T 13476—2009[S]. Beijing: China Standards Press, 2010. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (14) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return