| Citation: | FAN Ridong, YANG Peng, YANG Aiwu. Fluidized solidified soil and its workability and strength based on pumping construction[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2026, 40(1): 151-158. doi: 10.20265/j.cnki.issn.1007-2993.2024-0513 |
| [1] |
周永祥, 王继忠. 预拌固化土的原理及工程应用前景[J]. 新型建筑材料, 2019, 46(10): 117-120. (ZHOU Y X, WANG J Z. Principle of ready-mixed solidified soil and its prospects for engineering application[J]. New Building Materials, 2019, 46(10): 117-120. (in Chinese) doi: 10.3969/j.issn.1001-702X.2019.10.027
ZHOU Y X, WANG J Z. Principle of ready-mixed solidified soil and its prospects for engineering application[J]. New Building Materials, 2019, 46(10): 117-120. (in Chinese) doi: 10.3969/j.issn.1001-702X.2019.10.027
|
| [2] |
王英军, 黄昌乾. 肥槽回填土常见工程问题与处理方法. 岩土工程技术, 2019, 33(2): 84-88. (WANG Y J, HUANG C Q. Common engineering problems and treatment methods for backfilling soil in foundation trench[J]. Geotechnical Engineering Technique, 2019, 33(2): 84-88. (in Chinese)
WANG Y J, HUANG C Q. Common engineering problems and treatment methods for backfilling soil in foundation trench[J]. Geotechnical Engineering Technique, 2019, 33(2): 84-88. (in Chinese)
|
| [3] |
丁建文, 洪振舜, 刘松玉. 疏浚淤泥流动固化处理与流动性试验研究[J]. 岩土力学, 2011, 32(S1): 280-284. (DING J W, HONG Z S, LIU S Y, et al. Study of flow-solidification method and fluidity test of dredged clays[J]. Rock and Soil Mechanics, 2011, 32(S1): 280-284, (in Chinese) doi: 10.16285/j.rsm.2011.s1.123
DING J W, HONG Z S, LIU S Y, et al. Study of flow-solidification method and fluidity test of dredged clays[J]. Rock and Soil Mechanics, 2011, 32(S1): 280-284, doi: 10.16285/j.rsm.2011.s1.123
|
| [4] |
郎瑞卿, 裴璐熹, 孙立强, 等. 新拌不同液限淤泥固化土流动性试验研究[J]. 岩土力学, 2023, 44(10): 2789-2797. (LANG R Q, PEI L X, SUN L Q, et al. Experimental study on the flowability of freshly mixed solidified muds with different liquid limits[J]. Rock and Soil Mechanics, 2023, 44(10): 2789-2797, (in Chinese) doi: 10.16285/j.rsm.2023.0867
LANG R Q, PEI L X, SUN L Q, et al. Experimental study on the flowability of freshly mixed solidified muds with different liquid limits[J]. Rock and Soil Mechanics, 2023, 44(10): 2789-2797, doi: 10.16285/j.rsm.2023.0867
|
| [5] |
黄英豪, 戴济群, 徐 锴. 新拌固化淤泥的流动性和黏滞性试验研究[J]. 岩土工程学报, 2022, 44(2): 235-244. (HANG Y H, DAI J Q, XU K, et al. Flowability and viscosity of freshly solidified dredged materials[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 235-244. (in Chinese) doi: 10.11779/CJGE202202004
HANG Y H, DAI J Q, XU K, et al. Flowability and viscosity of freshly solidified dredged materials[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 235-244. (in Chinese) doi: 10.11779/CJGE202202004
|
| [6] |
王 硕, 黄英豪, 王文翀, 等. 新拌固化淤泥流动性测试标准试验研究[J]. 水利水运工程学报, 2024(4): 89-100. (WANG S, HUANG Y H, WANG W C, et al. Experimental research on test standards for freshly mixed solidified sludge flowability[J]. Hydro-Science and Engineering, 2024(4): 89-100. (in Chinese) doi: 10.12170/20230805001
WANG S, HUANG Y H, WANG W C, et al. Experimental research on test standards for freshly mixed solidified sludge flowability[J]. Hydro-Science and Engineering, 2024(4): 89-100. (in Chinese) doi: 10.12170/20230805001
|
| [7] |
LEE JR L T. Method to rapidly assess the index properties of fine-grained dredged materials[J]. Geotechnical Testing Journal, 2004, 27(5): 464-468. doi: 10.1520/GTJ11812
|
| [8] |
丁建文, 刘铁平, 曹玉鹏, 等. 高含水率疏浚淤泥固化土的抗压试验与强度预测[J]. 岩土工程学报, 2013, 35(S2): 55-60. (DING J W, LIU T P, CAO Y P, et al. Unconfined compression tests and strength prediction method for solidified soils of dredged clays with high water content[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 55-60. (in Chinese)
DING J W, LIU T P, CAO Y P, et al. Unconfined compression tests and strength prediction method for solidified soils of dredged clays with high water content[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 55-60. (in Chinese)
|
| [9] |
纪文栋, 张宇亭, 颜容涛, 等. 高吸水材料改善高含水率淤泥流动性的试验研究[J]. 岩土力学, 2015, 36(S1): 281-286. (JI W D, ZHANG Y T, YAN R T, et al. An experimental study of decreasing fluidity of silt with high moisture content by high water absorbent material[J]. Rock and Soil Mechanics, 2015, 36(S1): 281-286. (in Chinese)
JI W D, ZHANG Y T, YAN R T, et al. An experimental study of decreasing fluidity of silt with high moisture content by high water absorbent material[J]. Rock and Soil Mechanics, 2015, 36(S1): 281-286. (in Chinese)
|
| [10] |
王东星, 陈政光. 氯氧镁水泥固化淤泥力学特性应变速率效应研究[J]. 岩土力学, 2021, 42(10): 2634-2646. (WANG D X, CHEN Z G. Strain rate effect on mechanical properties of magnesium oxychloride cement solidified sludge[J]. Rock and Soil Mechanics, 2021, 42(10): 2634-2646. (in Chinese)
WANG D X, CHEN Z G. Strain rate effect on mechanical properties of magnesium oxychloride cement solidified sludge[J]. Rock and Soil Mechanics, 2021, 42(10): 2634-2646. (in Chinese)
|
| [11] |
赵春彦, 黄启友, 郎 锋, 等. 单因素和多因素作用下的水泥土强度评估模型试验研究[J]. 铁道科学与工程学报, 2018, 15(11): 2788-2795. (ZHAO C Y, HUANG Q Y, LANG F, et al. Experimental study on strength evaluation model of cement soil under single factor and multi factors[J]. Journal of Railway Science and Engineering, 2018, 15(11): 2788-2795. (in Chinese)
ZHAO C Y, HUANG Q Y, LANG F, et al. Experimental study on strength evaluation model of cement soil under single factor and multi factors[J]. Journal of Railway Science and Engineering, 2018, 15(11): 2788-2795. (in Chinese)
|
| [12] |
冯志超, 朱 伟, 张春雷, 等. 黏粒含量对固化淤泥力学性质的影响[J]. 岩石力学与工程学报, 2007, 26(S1): 3052-3057. (FENG Z C, ZHU W, ZHANG C L, et al. Influence of clay content on mechanical properties of solidified silt[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3052-3057. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.z1.070
FENG Z C, ZHU W, ZHANG C L, et al. Influence of clay content on mechanical properties of solidified silt[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3052-3057. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.z1.070
|
| [13] |
UDDIN K, BALASUBRAMANIAM A S, BERGADO D T. Engineering behavior of cement-treated Bangkok soft clay[J]. Geotechnical Engineering, 1997, 28(1): 89-119.
|
| [14] |
孙晓辉, 朱伟, 徐志荣. 污泥固化/稳定化处理中强度发生机理研究[C]//Proceedings of 2011 AASRI Conference on Information Technology and Economic Development. Kuala Lumpur: Intelligent Information Technology Application Association, 2011: 435-438. (SUN X H, ZHU W, XU Z R. A study on mechanism of strength in Solidification/Stabilization treatment of sludge[C]//Proceedings of 2011 AASRI Conference on Information Technology and Economic Development. Kuala Lumpur: Intelligent Information Technology Application Association, 2011: 435-438. (in Chinese)
SUN X H, ZHU W, XU Z R. A study on mechanism of strength in Solidification/Stabilization treatment of sludge[C]//Proceedings of 2011 AASRI Conference on Information Technology and Economic Development. Kuala Lumpur: Intelligent Information Technology Application Association, 2011: 435-438. (in Chinese)
|
| [15] |
朱 伟, 张春雷, 高玉峰, 等. 海洋疏浚泥固化处理土基本力学性质研究[J]. 浙江大学学报(工学版), 2005, 39(10): 1561-1565. (ZHU W, ZHANG C L, GAO Y F, et al. Fundamental mechanical properties of solidified dredged marine sediment[J]. Journal of Zhejiang University (Engineering Science), 2005, 39(10): 1561-1565. (in Chinese)
ZHU W, ZHANG C L, GAO Y F, et al. Fundamental mechanical properties of solidified dredged marine sediment[J]. Journal of Zhejiang University (Engineering Science), 2005, 39(10): 1561-1565. (in Chinese)
|
| [16] |
吴 俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655. (WU J, ZHENG X Y, YANG A W, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655. (in Chinese)
WU J, ZHENG X Y, YANG A W, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655. (in Chinese)
|
| [17] |
周永祥, 刘 倩, 王祖琦, 等. 流态固化土用无熟料胶凝材料的性能研究[J]. 硅酸盐通报, 2022, 41(10): 3548-3555. (ZHOU Y X, LIU Q, WANG Z Q, et al. Properties of cementitious materials without clinker for fluid solidified soil[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3548-3555, (in Chinese) doi: 10.16552/j.cnki.issn1001-1625.2022.10.020
ZHOU Y X, LIU Q, WANG Z Q, et al. Properties of cementitious materials without clinker for fluid solidified soil[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3548-3555, doi: 10.16552/j.cnki.issn1001-1625.2022.10.020
|
| [18] |
李雅曦, 王 琴, 张秋臣, 等. 无机固化剂对流态固化土结构和性能的影响[J]. 材料导报, 2023, 37(S1): 23010106. (LI Y X, WANG Q, ZHANG Q C, et al. Effect of inorganic curing agents on the structure and properties of fluid cured soils[J]. Materials Reports, 2023, 37(S1): 23010106. (in Chinese)
LI Y X, WANG Q, ZHANG Q C, et al. Effect of inorganic curing agents on the structure and properties of fluid cured soils[J]. Materials Reports, 2023, 37(S1): 23010106. (in Chinese)
|
| [19] |
MOHANTY S, ROY N, SINGH S P, et al. Strength and durability of flyash, GGBS and cement clinker stabilized dispersive soil[J]. Cold Regions Science and Technology, 2021, 191: 103358. doi: 10.1016/j.coldregions.2021.103358
|
| [20] |
SHEEN Y N, ZHANG L H, LE D H. Engineering properties of soil-based controlled low-strength materials as slag partially substitutes to Portland cement[J]. Construction and Building Materials, 2013, 48: 822-829. doi: 10.1016/j.conbuildmat.2013.07.046
|
| [21] |
IBRAHIM, RAHMAN M K, NAJAMUDDIN S K, et al. A review on utilization of industrial by-products in the production of controlled low strength materials and factors influencing the properties[J]. Construction and Building Materials, 2022, 325: 126704. doi: 10.1016/j.conbuildmat.2022.126704
|