Volume 39 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
Liang Tao, Guan Yanpeng, Han Yuting, Liu Xiaoli. Development of high-precision drilling model test platform for sand and gravel formations[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(3): 317-324. doi: 10.20265/j.cnki.issn.1007-2993.2025-0015
Citation: Liang Tao, Guan Yanpeng, Han Yuting, Liu Xiaoli. Development of high-precision drilling model test platform for sand and gravel formations[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2025, 39(3): 317-324. doi: 10.20265/j.cnki.issn.1007-2993.2025-0015

Development of high-precision drilling model test platform for sand and gravel formations

doi: 10.20265/j.cnki.issn.1007-2993.2025-0015
  • Received Date: 2025-01-09
  • Accepted Date: 2025-03-07
  • Rev Recd Date: 2025-02-13
  • Publish Date: 2025-06-09
  • Compared to general static model tests, drilling type model tests require consideration of dynamic issues. The test theories are complex and the test control conditions are strict. On the basis of the static similarity ratio criterion, this article derives the dynamic similarity ratio criterion for drilling model tests and develops a matching model test platform. The platform uses surface vibration compaction method to prepare samples. By finely controlling the vibration conditions, it overcomes the shortcomings of traditional rain method and manual compaction method, and achieves the maximum dry density, higher density and uniformity of the samples. To address the issue of high stability requirements for monitoring data, a pressure monitoring sensor was installed at the bottom of the sample barrel to monitor drilling resistance and eliminate the influence of sliding friction between the guide rail and the rotary drilling platform. The new method provides more stable monitoring values, with residual squared values approximately one-third that of traditional methods. The experiment shows that the new model experimental platform and method can overcome the shortcomings of existing technology, distinguish the influence of subtle changes in experimental conditions on drilling efficiency, and can be used for research on the adaptability of pile drilling tools and tool selection.

     

  • loading
  • [1]
    WEI Y J, YANG Y Y, TAO M J. Effects of gravel content and particle size on abrasivity of sandy gravel mixtures[J]. Engineering Geology,2018,243:26-35. doi: 10.1016/j.enggeo.2018.06.009
    [2]
    申玉生, 陈先智, 卢治仁, 等. 富水圆砾地层地铁车站超深基坑施工关键技术[M]. 北京: 中国铁道出版社有限公司, 2019. (SHEN Y S, CHEN X Z, LU Z R, et al. Key technology for ultra deep foundation pit construction of water-rich round gravel formation subway station[M]. Beijing: Publishing House, 2019. (in Chinese)

    SHEN Y S, CHEN X Z, LU Z R, et al. Key technology for ultra deep foundation pit construction of water-rich round gravel formation subway station[M]. Beijing: Publishing House, 2019. (in Chinese)
    [3]
    李长清, 叶万军, 胡双平, 等. 高富水卵砾石地层热物理参数试验研究[J]. 工程地质学报,2020,28(3):510-519. (LI C Q, YE W J, HU S P, et al. Experimental study on thermophysical parameters of high water gravel formation for freezing construction[J]. Journal of Engineering Geology,2020,28(3):510-519. (in Chinese)

    LI C Q, YE W J, HU S P, et al. Experimental study on thermophysical parameters of high water gravel formation for freezing construction[J]. Journal of Engineering Geology, 2020, 28(3): 510-519. (in Chinese)
    [4]
    MA S K, DUAN Z B, HUANG Z, et al. Study on the stability of shield tunnel face in clay and clay-gravel stratum through large-scale physical model tests with transparent soil[J]. Tunnelling and Underground Space Technology,2022,119:104199. doi: 10.1016/j.tust.2021.104199
    [5]
    ZHEN Z, GE X S, ZHANG J. Soil conditioning tests on sandy and cobbly soil for shield tunneling[J]. KSCE Journal of Civil Engineering,2021,25(4):1229-1238. doi: 10.1007/s12205-021-0921-0
    [6]
    LIU X R, XIONG F, ZHOU X H, et al. Physical model test on the influence of the cutter head opening ratio on slurry shield tunnelling in a cobble layer[J]. Tunnelling and Underground Space Technology,2022,120:104264. doi: 10.1016/j.tust.2021.104264
    [7]
    史旦达, 杨彦骋, 邓益兵, 等. 考虑转速比影响的砂土中螺旋挤扩钻具成孔特性宏细观模型试验[J]. 岩土力学,2018,39(6):1981-1990,1998. (SHI D D, YANG Y C, DENG Y B, et al. Experimental study of the effect of drilling velocity ratio on the behavior of auger piling in sand[J]. Rock and Soil Mechanics,2018,39(6):1981-1990,1998. (in Chinese)

    SHI D D, YANG Y C, DENG Y B, et al. Experimental study of the effect of drilling velocity ratio on the behavior of auger piling in sand[J]. Rock and Soil Mechanics, 2018, 39(6): 1981-1990,1998. (in Chinese)
    [8]
    邓益兵, 周 健, 刘 钟, 等. 砂土中螺旋挤扩钻具下旋成孔过程的模型试验研究[J]. 岩石力学与工程学报,2011,30(12):2558-2566. (DENG Y B, ZHOU J, LIU Z, et al. Model test study of augered piling of screw displacement auger in sand[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(12):2558-2566. (in Chinese)

    DENG Y B, ZHOU J, LIU Z, et al. Model test study of augered piling of screw displacement auger in sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2558-2566. (in Chinese)
    [9]
    张 林, 陈建叶. 水工大坝与地基模型试验及工程应用[M]. 成都: 四川大学出版社, 2009. (ZHANG L, CHEN J Y. Hydraulic dam and foundation model test and engineering application[M]. Chengdu: Sichuan University Press, 2009. (in Chinese)

    ZHANG L, CHEN J Y. Hydraulic dam and foundation model test and engineering application[M]. Chengdu: Sichuan University Press, 2009. (in Chinese)
    [10]
    张强勇, 李术才, 李 勇, 等. 地下工程模型试验新方法[M]. 北京: 科学出版社, 2012. (ZHANG Q Y, LI S C, LI Y, et al. New method for underground engineering model testing[M]. Beijing: Science Press, 2012. (in Chinese)

    ZHANG Q Y, LI S C, LI Y, et al. New method for underground engineering model testing[M]. Beijing: Science Press, 2012. (in Chinese)
    [11]
    中华人民共和国交通运输部. 公路土工试验规程: JTG 3430−2020[S]. 北京: 人民交通出版社, 2020. (Ministry of Transport of the People’s Republic of China. Test methods of soils for highway engineering: JTG 3430−2020[S]. Beijing: China Communications Press, 2020. (in Chinese)

    Ministry of Transport of the People’s Republic of China. Test methods of soils for highway engineering: JTG 3430−2020[S]. Beijing: China Communications Press, 2020. (in Chinese)
    [12]
    DENIES N, HUYBRECHTS N. Deep mixing method: equipment and field of applications[M]//INDRARATNA B, CHU J, RUJIKIATKAMJORN C. Ground Improvement Case Histories. Amsterdam: Elsevier, 2015: 311-350.
    [13]
    KITAZUME M, TERASHI M. The deep mixing method[M]. London: CRC Press, 2013.
    [14]
    何清华. 工程机械手册: 桩工机械[M]. 北京: 清华大学出版社, 2018. (HE Q H. Handbook of construction machinery: piling machinery [M]. Beijing: Tsinghua University Press, 2018. (in Chinese)

    HE Q H. Handbook of construction machinery: piling machinery [M]. Beijing: Tsinghua University Press, 2018. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (31) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return