Volume 36 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Lu Shun. Application of Piezocone Penetration Test and Flat Dilatometer Test in Shanghai Soft Clay[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2022, 36(6): 494-501. doi: 10.3969/j.issn.1007-2993.2022.06.013
Citation: Lu Shun. Application of Piezocone Penetration Test and Flat Dilatometer Test in Shanghai Soft Clay[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2022, 36(6): 494-501. doi: 10.3969/j.issn.1007-2993.2022.06.013

Application of Piezocone Penetration Test and Flat Dilatometer Test in Shanghai Soft Clay

doi: 10.3969/j.issn.1007-2993.2022.06.013
  • Received Date: 2021-08-30
  • Publish Date: 2022-12-08
  • Based on the geotechnical engineering survey project of Shanghai Rail Transit Airport connecting line, the piezocone penetration test and flat dilatometer test were carried out, and the high-quality sampling compression test results were obtained. The effects of different tests and different chart classification methods on the classification effect were studied, and the relationship between flat dilatometer test and over consolidation ratio, cone tip resistance and compression modulus were analyzed. The results show that the chart method of pore pressure static cone penetration test has a good classification effect on Shanghai soft clay, but it is not ideal for transition soil (silt) and "mixed soil", and the classification method of flat dilatometer test can achieve a good classification effect. The soft clay is overconsolidation soil while the burial depth is less than 18.0 m in Shanghai area. Its overconsolidation ratio decreases with the depth increase, and the soft clay is normally consolidated soil while the burial depth is greater than 18.0 m. For different types of soft clay, there is an obvious linear correlation between cone tip resistance and compression modulus, which can be expressed by a unified formula.

     

  • loading
  • [1]
    武朝军. 上海浅部土层沉积环境及其物理力学性质[D]. 上海: 上海交通大学, 2016.
    [2]
    周念清,李 丹,尹家春,等. 长江口饱和软黏土多静力因子耦合响应规律[J]. 华北水利水电学院学报,2020,41(1):83-89.
    [3]
    任士房,曾洪贤. 深层孔压静力触探技术的应用研究[J]. 工程勘察,2018,46(4):7-11.
    [4]
    姚 萌. 崇明东滩吹填区软土微观结构特征与渗透系数变化机理研究[D]. 长春: 吉林大学, 2020.
    [5]
    倪 静,朱丛薇,韩玉琪,等. 上海黏土固结特性及其各向异性的试验研究[J]. 铁道科学与工程学报,2020,128(11):78-84.
    [6]
    张 硕. 考虑小应变刚度特性的超固结结构性黏土本构模型及应用研究[D]. 上海: 上海交通大学, 2019.
    [7]
    任士房,曾洪贤. 基于圆形弹性薄板模型求解扁铲侧胀试验侧向基床系数[J]. 路基工程,2019,(3):30-35.
    [8]
    耿功巧,陈 妍,蔡国军,等. 基于CPTU原位测试的深基坑工程中黏性土静止土压力系数的评价研究[J]. 工程勘察,2019,(9):1-6.
    [9]
    高彦斌. 两种K0固结土样的强度比及其各向异性[J]. 同济大学学报:自然科学版,2019,47(5):634-639.
    [10]
    冷 建. 循环荷载下结构性上海黏土的力学特性研究[D]. 上海: 上海交通大学, 2018.
    [11]
    肖 玮. 基于扁铲侧胀试验与静力触探试验的砂土应力历史研究[J]. 土工基础,2020,34(4):147-151.
    [12]
    ROBERTSON P K. Interpretation of cone penetration tests — a unified approach[J]. Canadian Geotechnical Journal,2009,46(11):1337-1355.
    [13]
    MOSS R E S,SEED R B,KAYEN R E,et al. CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(8):1032-1051. doi: 10.1061/(ASCE)1090-0241(2006)132:8(1032)
    [14]
    唐飞跃. 基于扁铲侧胀试验材料指数的岩土类别研究[J]. 土工基础,2020,48(3):109-111, 130.
    [15]
    高彦斌,陈忠清. 上海地区软黏土的OCR及地质成因[J]. 岩土工程学报,2017,39(S2):79-82. doi: 10.11779/CJGE2017S2020
    [16]
    《工程地质手册》编委会. 工程地质手册(第五版)[M]. 北京: 中国建筑工业出版社, 2018.
    [17]
    MARCHETTI S, MONACO P, TOTANI G, et al. The flat dilatometer test (DMT) in soil investigations — a report by the ISSMGE Committee TC16[C]. Reprinted in Proc. 2nd Int. Conf. on the Flat Dilatometer, Washington D. C., 2006: 7-48.
    [18]
    魏道垛,胡中雄. 上海浅层地基土的前期固结压力及有关压缩性参数的试验研究[J]. 岩土工程学报,1980,2(4):13-22. doi: 10.3321/j.issn:1000-4548.1980.04.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (63) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return