Volume 38 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
Wang Xiaobing, Liu Lin, Wang Junqing, Hu Shilei, Wen Lei. Lithology Recognition of Rock Image Based on Convolutional Neural ResNet50 Residual Network[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(3): 294-302. doi: 10.3969/j.issn.1007-2993.2024.03.006
Citation: Wang Xiaobing, Liu Lin, Wang Junqing, Hu Shilei, Wen Lei. Lithology Recognition of Rock Image Based on Convolutional Neural ResNet50 Residual Network[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(3): 294-302. doi: 10.3969/j.issn.1007-2993.2024.03.006

Lithology Recognition of Rock Image Based on Convolutional Neural ResNet50 Residual Network

doi: 10.3969/j.issn.1007-2993.2024.03.006
  • Received Date: 2023-08-06
  • Accepted Date: 2023-12-25
  • Rev Recd Date: 2023-10-15
  • Publish Date: 2024-06-12
  • Deep learning convolutional neural network algorithm is widely used in the lithology identification of rock images. A rock image lithology recognition model was constructed by combining the convolutional neural residual ResNet50 network, and the parameters of the network model were optimized and verified according to the defined loss function. At the same time, the lithology of the rock image was predicted by the constructed recognition model, and the error causes were analyzed according to the prediction results. The research showed that based on the deep convolutional neural ResNet50 residual network, the lithology prediction model can be constructed and the parameters can be optimized according to the ratio of the training set, test set, and verification set 8: 1: 1, to realize the lithology prediction of rock image. Combined with the project example, the rock image lithology identification model of four kinds of lithology, such as biotite granodiorite, metamorphic sandstone, quartzite, and biotite granite, is constructed. The recognition accuracy of the model is generally up to 75%~90%, except for the fractured rock mass with structural joints. The accuracy of rock image prediction results is greatly affected by the development of rock mass structural fissures and the quality of rock images. The accuracy of prediction results can be improved by increasing the number of training samples.

     

  • loading
  • [1]
    杨 磊, 熊 昶, 刘文超, 等. 基于改进ResNet深度残差网络的岩屑岩性识别研究[J]. 长江大学学报 (自然科学版),2023,20(2):11-19.
    [2]
    张树义, 波 王, 马尽文. 基于深度卷积自编码器的岩性分类与识别[J]. 信号处理,2023,39(1):11-19.
    [3]
    李新叶, 宋 维. 基于深度学习的图像语义分割研究进展[J]. 科学技术与工程,2019,19(33):21-27.
    [4]
    马泽栋, 马 雷, 李 科, 等. 基于岩石图像深度学习的多尺度岩性识别[J]. 地质科技通报,2022,6(41):316-322.
    [5]
    程国建, 郭文惠, 范鹏召. 基于卷积神经网络的岩石图像分类[J]. 西安石油大学学报( 自然科学版),2017,32(4):116-122.
    [6]
    许振浩, 马 文, 李术才, 等. 岩性识别: 方法、现状及智能化发展趋势[J]. 地质评论,2022,68(6):2290-2304.
    [7]
    张 珂, 冯晓晗, 郭玉荣, 等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报,2021,26(10):2305-2325. doi: 10.11834/jig.200302
    [8]
    胡启成, 叶为民, 王 琼, 等. 基于地质图像大数据的岩性识别研究[J]. 工程地质学报,2020,28(6):1433-1440.
    [9]
    马陇飞, 萧汉敏, 陶敬伟, 等. 基于深度学习岩性分类的研究与应用[J]. 科学技术与工程,2022,22(7):2609-2617. doi: 10.3969/j.issn.1671-1815.2022.07.007
    [10]
    熊越晗, 刘东燕, 刘东升, 等. 基于岩样细观图像深度学习的岩性自动分类方法[J]. 吉林大学学报(地球科学版),2021,51(5):1597-1604.
    [11]
    王 琼, 杨 杰, 霍凤财, 等. 基于MobileViT的岩石薄片图像岩性识别方法研究[J]. 地质通报, 2023, 1-11.
    [12]
    程国建, 李 碧, 万晓龙, 等. 基于SqueezeNet卷积神经网络的岩石薄片图像分类研究[J]. 矿物岩石,2021,41(4):94-101. doi: 10.3969/j.issn.1001-6872.2021.4.kwys202104009
    [13]
    谷宇峰, 张道勇, 鲍志东, 等. 利用GS-LinghtGBM机器学习模型识别致密砂岩地层岩性[J]. 地质科技通报,2021,40(4):224-234.
    [14]
    杨 笑, 王志章, 周子勇, 等. 基于参数优化AdaBoost算法的酸性火山岩岩性分类[J]. 石油学报,2019,40(4):457-467. doi: 10.7623/syxb201904007
    [15]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):1-9.
    [16]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.2016.
    [17]
    冯雅兴, 龚 希, 徐永洋, 等. 基于岩石新鲜面图像与孪生卷积神经网络的岩性识别方法研究[J]. 地理与地理信息科学,2019,35(5):89-94. doi: 10.3969/j.issn.1672-0504.2019.05.015
    [18]
    张 野, 李明超, 韩 帅. 基于岩石图像深度学习的岩性自动识别与分类方法[J]. 岩石学报,2018,42(2):333-342.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (129) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return