Wang Tingjing. Instability Evolution of Single Fracture with Different Dip Angles on Heterogeneous Rock[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(5): 539-547. doi: 10.3969/j.issn.1007-2993.2024.05.006
Citation: Wang Tingjing. Instability Evolution of Single Fracture with Different Dip Angles on Heterogeneous Rock[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(5): 539-547. doi: 10.3969/j.issn.1007-2993.2024.05.006

Instability Evolution of Single Fracture with Different Dip Angles on Heterogeneous Rock

doi: 10.3969/j.issn.1007-2993.2024.05.006
  • Received Date: 2023-10-28
  • Accepted Date: 2024-03-11
  • Rev Recd Date: 2023-12-20
  • Available Online: 2024-10-09
  • Publish Date: 2024-10-09
  • Fractures in rock mass have a significant influence on the mechanical behavior, energy evolution and instability failure of rock. To clarify the rock energy evolution and instability failure mechanism of single fracture with different dip angles, based on the particle flow PFC2D method, a numerical model of sandy mudstone with single fracture with different dip angles was established, and the uniaxial compression test of sandy mudstone with single fracture with different dip angles was simulated. The results show that with the increase of single fracture dip angle, the strength and elastic modulus of sandy mudstone decrease first and then increase, and the prefabricated crack will affect the crack initiation position of the fracture surface and accelerate the formation of the fracture surface. The acoustic emission event has a small range of quiet period before the rock sample is destroyed, which can be used as a precursory criterion for rock failure. With the increase of fracture dip angle, the total energy continues to increase, and the elastic energy and dissipation energy show a trend of increasing first and then decreasing. When the dip angle is 30°, the rock sample has the weakest impact tendency, which is beneficial to reduce the risk of rock burst. When the dip angle is 90°, the rock sample has the strongest impact tendency, which is not conducive to the prevention and control of rock burst.

     

  • [1]
    王春萍, 王 璐, 刘建锋, 等. 单轴压缩条件下单裂隙花岗岩力学特性及破坏特征[J]. 西南交通大学学报,2024,59(2):369-376, 446.
    [2]
    钟 振, 孟 醒, 胡云进, 等. 考虑基质渗透性的岩体单裂隙渗流及影响因素的室内和数值试验研究[J]. 岩石力学与工程学报,2023,42(9):2148-2163.
    [3]
    宋 洋, 罗志恒, 张 波, 等. 裂隙位置对类岩体短柱单轴压缩破坏形态影响[J]. 山东大学学报(工学版),2023,53(5):121-131.
    [4]
    宋勇军, 李晨婧, 毕 冉, 等. 冻融作用下岩石孔隙扩展演化特征研究[J]. 冰川冻土,2023,45(3):1116-1127.
    [5]
    陈家嵘, 周昌台, 周 韬, 等. 压剪荷载下含单一裂隙砂岩的应变演化与破坏特征研究[J]. 岩石力学与工程学报,2023,42(7):1743-1758.
    [6]
    王 磊, 刘化强, 李少波, 等. 不同围压下含预制裂隙煤体裂隙演化特征研究[J]. 采矿与安全工程学报,2023,40(4):786-797.
    [7]
    王 磊, 刘化强, 李少波, 等. 煤体张开型裂隙演化规律及失稳前兆试验[J].中国矿业大学学报,2024,53(2):250-263.
    [8]
    LI X, YAO Z, LIU X, HUANG X. Energy evolution and damage mechanism of fractured sandstone with different angles. Energies. 2022, 15(4): 1518.
    [9]
    CHEN J, YIN X, ZHOU C, et al. Interaction between flaws and failure characteristics of red sandstone containing double flaws under compressive-shear loading[J]. Engineering Fracture Mechanics, 2023, 292, 109664.
    [10]
    章德超, 肖桃李, 折海成, 等. 基于DIC的裂隙分布对层状复合岩力学特性及变形破坏影响研究[J/OL]. 中国测试, 2023, 1-11. http://kns.cnki.net/kcms/detail/51.1714.TB.20230928.1719.002.html.
    [11]
    周春煦, 冯红春, 周文正. 充填双裂隙砂岩力学特性及裂隙演化规律研究[J/OL].有色金属科学与工程, 2024, 1-13. http://kns.cnki.net/kcms/detail/36.1311.TF.20231013.1607.004.html.
    [12]
    ZHANG Y, ZHONG L, PANG F, et al. Characteristics of energy dissipation in T-shaped fractured rocks under different loading rates[J]. Sustainability,2023,15(18):13695. doi: 10.3390/su151813695
    [13]
    CHEN Y, TANG Y, CAO R, et al. Failure mode of parallel-fractured rock-like sample with different inclinations[J]. Theoretical and Applied Fracture Mechanics,2023,127:104053. doi: 10.1016/j.tafmec.2023.104053
    [14]
    REN X, ZHANG H, ZHANG J, et al. Numerical simulation analysis of fracture propagation in rock based on smooth particle hydrodynamics[J]. Materials,2023,16(19):6560. doi: 10.3390/ma16196560
    [15]
    张 岩, 经 纬, 经来旺, 等. 裂隙倾角及长度对岩石强度和破坏特征影响数值模拟[J]. 煤炭技术,2023,42(10):106-109.
    [16]
    王子航, 陈俊智, 冯豪天. 直剪条件下含裂隙岩石变形特征研究[J]. 有色金属(矿山部分),2023,75(5):127-133.
    [17]
    WU Y, MA D, HU X, et al. Numerical simulation on the mechanical and fracture behavior of bedding argillaceous sandstone containing two pre-existing flaws[J]. Theoretical and Applied Fracture Mechanics,2023,127:104047. doi: 10.1016/j.tafmec.2023.104047
    [18]
    李志强, 刘国锋, 晏长根, 等. 含原生隐微裂隙岩石颗粒流模型构建及细观参数标定方法研究[J].工程地质学报,2023,31(6):1842-1853.
    [19]
    石 崇, 张 强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[J]. 岩土力学,2018,39(S2):36.
    [20]
    原先凡. 砂质泥岩卸荷流变力学特性研究[D]. 宜昌: 三峡大学, 2014.
    [21]
    ZHANG S, CHEN L, LU P, et al. Analysis of the energy and damage evolution rule for sandstone based on the particle flow method[J]. Mechanics of Time-Dependent Materials,2022,26(3):531-546. doi: 10.1007/s11043-021-09499-9
    [22]
    YANG Y S, CHENG W, ZHANG Z R, et al. Energy evolution law of marble failure process under different confining pressures based on particle discrete element method[J]. Frontiers in Materials,2021,8:665955. doi: 10.3389/fmats.2021.665955
    [23]
    王桂林, 张 亮, 许 明, 等. 单轴压缩下非贯通节理岩体损伤破坏能量演化机制研究[J]. 岩土工程学报,2019,41(4):639-647. doi: 10.11779/CJGE201904006
    [24]
    刘鹏飞, 范俊奇, 郭佳奇, 等. 三轴应力下花岗岩加载破坏的能量演化和损伤特征[J]. 高压物理学报,2021,35(2):44-53.
    [25]
    尹升华, 侯永强, 杨世兴, 等. 单轴压缩下混合集料胶结充填体变形破坏及能耗特征分析[J]. 中南大学学报(自然科学版),2021,52(3):936-947.
    [26]
    LI P, CAI M. Energy evolution mechanism and failure criteria of jointed surrounding rock under uniaxial compression[J]. Journal of Central South University,2021,28(6):1857-1874. doi: 10.1007/s11771-021-4735-5
    [27]
    张如九, 张延杰, 高 仝, 等. 基于最大能量耗散率的岩爆倾向性指标研究[J].岩石力学与工程学报,2023,42(12):2993-3009.
    [28]
    张 亮, 王桂林, 雷瑞德, 等. 单轴压缩下不同长度单裂隙岩体能量损伤演化机制[J]. 中国公路学报,2021,34(1):24-34. doi: 10.3969/j.issn.1001-7372.2021.01.003
    [29]
    朱志洁, 李瑞琪, 汤国水, 等. 含裂隙煤体能量耗散特征与冲击倾向性研究[J]. 煤炭科学技术,2023,51(5):32-44.
  • Relative Articles

    [1]Zhang Zixuan, Cao Baohua, Han Zemin, Xu Jiangbo, Cheng Fanghui, Chen Shaohua, Hou Xinmin, Zhan Haochen. PFC3D Particle Flow Simulation of Nano-Clay Modified Loess Triaxial Test[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(3): 365-373. doi: 10.3969/j.issn.1007-2993.2024.03.016
    [2]He Kang, Lu Hui, Wang Chuanle, Han Yang, Li Erbing. Energy Evolution and Failure Tendency Index of Beishan Granite[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(2): 216-225. doi: 10.3969/j.issn.1007-2993.2024.02.015
    [3]Luo Guitao. Experimental Study on Compressive and Tensile Failure Characteristics of Different Rocks[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2023, 37(4): 438-442. doi: 10.3969/j.issn.1007-2993.2023.04.011
    [4]Tao Wei, Ye Tangjin, Zhang Wenhai, Wang Xiaoyu, Liu Congcong. Experimental Study on Uniaxial Compressive Fatigue Property of Cracked Rock-like Materials[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2022, 36(5): 389-394. doi: 10.3969/j.issn.1007-2993.2022.05.009
    [5]Liu Jun, Gu Li, Guo Cheng, Zhuo Huiying. Discussion on Notices of Rock Expansion Test[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2020, 34(2): 117-121. doi: 10.3969/j.issn.1007-2993.2020.02.011
    [6]Liu Jun. Analysis on Residual Strength of Direct Shear Test of Rock[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2019, 33(3): 183-187. doi: 10.3969/j.issn.1007-2993.2019.03.013
    [7]Ma Yunpeng, Zhao Wanchun, Chen Yanqiu. Study on Acoustic Emission Energy Characteristics of Rocks with Different Brittleness[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2017, 31(4): 196-199. doi: 10.3969/j.issn.1007-2993.2017.04.008
    [8]Xiao Jie, Liu Baoguo. Research on Water-physical Properties of Rock Similar Materials[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2015, 29(3): 114-117. doi: 10.369.j.issn.1007-2993-2015.03.002
    [9]ZHENG Yu-hui. Experimental Research and Application of New Method of Stable-grout-based Rock Grouting[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2015, 29(4): 179-181. doi: 10.3969/j.issn.1007-2993.2015.04.004
    [10]Zuo Wei, Han Fei, Li Junniu. The Experimental Research on the seepage Law of Single Fracture Gritstone[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2012, 26(3): 113-119. doi: 10.3969/j.issn.1007-2993.2012.03.002
    [11]GAO Hongmei, LAN Yongwei. The Experiment of the Rmeability Law Under Temerature Function of Sandstone[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2010, 24(3): 161-163. doi: 10.3969/j.issn.1007-2993.2010.03.013
    [12]Xu Rundong, Xu Linsheng. Linear Elastic Analysis of Stress in Surrounding Rock of Double Tunnles[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2005, 19(3): 127-129.
    [13]Liu Wenbin, Tang Chunan, Zhang Houquan. Influence of Internal Radius of Ring Specimen on Tensile Strength of Rock[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2004, 18(6): 286-290.
    [14]Yang Xuetang, Wang Fei. The Current Research Method & Evaluation of the Constitutive Model of Rock Mass[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2004, 18(4): 213-217.
    [15]Liu Wenbin, Tang Chunan, Tang Liexian. Numerical Simulation on Inflence of Residual Stength on Macroscopic Behavior of Rock Failure[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2004, 18(2): 59-63.
    [16]Treatment of Rock-Foundation crack in Chongqing Region[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2002, 16(1): 52-54.
    [17]the Calculation of the Lateral Pressure on Rock Construction Slope[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2002, 16(3): 131-134.
    [19]He Jian, Gu Xiuping. Pile Quality Testing by Elastic Wave Reflection Technique[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 1992, 6(3): 35-38.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.1 %FULLTEXT: 29.1 %META: 60.3 %META: 60.3 %PDF: 10.6 %PDF: 10.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.8 %其他: 2.8 %包头: 0.7 %包头: 0.7 %北京: 3.5 %北京: 3.5 %南京: 0.7 %南京: 0.7 %哥伦布: 0.7 %哥伦布: 0.7 %商丘: 0.7 %商丘: 0.7 %天津: 1.4 %天津: 1.4 %太原: 2.1 %太原: 2.1 %张家口: 20.6 %张家口: 20.6 %成都: 2.8 %成都: 2.8 %承德: 0.7 %承德: 0.7 %攀枝花: 1.4 %攀枝花: 1.4 %昆明: 2.8 %昆明: 2.8 %朝阳: 0.7 %朝阳: 0.7 %杭州: 2.1 %杭州: 2.1 %格兰特县: 1.4 %格兰特县: 1.4 %济南: 1.4 %济南: 1.4 %淄博: 0.7 %淄博: 0.7 %深圳: 0.7 %深圳: 0.7 %焦作: 0.7 %焦作: 0.7 %芒廷维尤: 29.1 %芒廷维尤: 29.1 %芝加哥: 3.5 %芝加哥: 3.5 %西宁: 3.5 %西宁: 3.5 %西安: 1.4 %西安: 1.4 %西雅图: 0.7 %西雅图: 0.7 %赣州: 1.4 %赣州: 1.4 %运城: 3.5 %运城: 3.5 %遵义: 1.4 %遵义: 1.4 %邯郸: 0.7 %邯郸: 0.7 %郑州: 0.7 %郑州: 0.7 %重庆: 1.4 %重庆: 1.4 %金华: 0.7 %金华: 0.7 %长春: 0.7 %长春: 0.7 %长沙: 1.4 %长沙: 1.4 %青岛: 0.7 %青岛: 0.7 %其他包头北京南京哥伦布商丘天津太原张家口成都承德攀枝花昆明朝阳杭州格兰特县济南淄博深圳焦作芒廷维尤芝加哥西宁西安西雅图赣州运城遵义邯郸郑州重庆金华长春长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (84) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return